Как найти стороны трапеции равнобедренной: Все формулы сторон трапеции

Содержание

Как найти боковые стороны равнобедренной трапеции

Трапеция представляет собой четырехугольник с двумя параллельными сторонами. Эти стороны называются основаниями. Их конечные точки соединены отрезками, которые называются боковыми сторонами. У равнобедренной трапеции боковые стороны равны.
Вам понадобится

Постройте трапецию согласно условиям задачи. Вам должны быть даны несколько параметров. Как правило, это оба основания и высота. Но возможны и другие условия — одно из оснований, его наклона к нему боковой стороны и высота. Обозначьте трапецию как АBCD, основания пусть будут a и b, высоту обозначьте как h, а боковые стороны — х. Поскольку трапеция равнобедренная, боковые стороны у нее равны.

Из вершин B и С проведите высоты к нижнему основанию. Точки пересечения обозначьте как M и N. К вас получилось два прямоугольных треугольника — AМВ и СND. Они равны, поскольку по условиям задачи равны их гипотенузы АВ и CD, а также катеты ВМ и СN. Соответственно, отрезки АМ и DN также равны между собой. Обозначьте их длину как y.

Для того, чтобы найти длину суммы этих отрезков, необходимо из длины основания a вычесть длину основания b. 2у=a-b. Соответственно, один такой отрезок будет равен разности оснований, деленной на 2. y=(a-b)/2.

Найдите длину боковой стороны трапеции, которая одновременно является и гипотенузой прямоугольного треугольника с известными вам катетами. Вычислите ее по теореме Пифагора. Она будет равна квадратному корню из суммы квадратов высоты и разности оснований, деленной на 2. То есть x=√y2+h3=√(a-b)2/4+h3.

Зная высоту и угол наклона боковой стороны к основанию, сделайте те же самые построения. Разность оснований в этом случае вычислять не нужно. Воспользуйтесь теоремой синусов. Гипотенуза равна длине катета, умноженной на синус противолежащего ему угла. В данном случае x=h*sinCDN или x=h*sinBAM.

Если вам дан угол наклона боковой стороны трапеции не к нижнему, а к верхнему основанию, найдите нужный угол, исходя из свойства параллельных прямых. Вспомните одно из свойств равнобедренной трапеции, согласно которому углы между одним из оснований и боковыми сторонами равны.

Как рассчитать площадь трапеции. Формула площади трапеции

Основные свойства трапеции

1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

AB + CD = BC + AD

2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.

5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

BC : AD = OC : AO = OB : DO

7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

d12 + d22 = 2ab + c2 + d2

Формулы определения длин сторон трапеции:

1. Формула длины оснований трапеции через среднюю линию и другую основу:

a = 2m – b

b = 2m – a

2. Формулы длины основ через высоту и углы при нижнем основании:

a = b + h · (ctg α + ctg β)

b = a – h · (ctg α + ctg β)

3. Формулы длины основ через боковые стороны и углы при нижнем основании:

a = b + c·cos α + d·cos β

b = a – c·cos α – d·cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Как найти площадь трапеции через четыре стороны

Отнимите от большего основания меньшее.

Найдите квадрат полученного числа.

Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.

Поделите полученное число на удвоенную разность оснований.

Найдите квадрат результата и отнимите его от квадрата боковой стороны.

Найдите корень из полученного числа.

Умножьте результат на половину от суммы оснований.

  • S – искомая площадь трапеции.
  • a, b – основания трапеции.
  • c, d – боковые стороны.

Средняя линия трапеции

Определение.

Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Через длины оснований и высоту

Чему равна площадь трапеции, если:
основание a =
основание b =
высота h =

Ответ: S =

0

ед.²

Округление ответа:

Чему равна площадь трапеции если известны основания a и b, а также высота h?

Формула

S = ½ ⋅ (a + b) ⋅ h

Пример

Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:

S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²

Площадь трапеции через перпендикулярные диагонали

{S= dfrac{1}{2} d_1 cdot d_2}

Формула для нахождения площади трапеции через перпендикулярные диагонали: {S=dfrac{1}{2}d_1 cdot d_2}, где d1, d2 — диагонали трапеции (перпендикулярные).

Как вычислить площадь равнобедренной трапеции через четыре стороны

Отнимите от большего основания трапеции меньшее и поделите результат на два.

Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.

Найдите корень из результата.

Умножьте полученное число на сумму оснований и поделите на два.

  • S — искомая площадь трапеции.
  • a, b — основания трапеции.
  • c, d — боковые стороны (напомним, в равнобедренной трапеции они равны).

Таблица с формулами площади трапеции

В зависимости от известных исходных данных и вида трапеции, площадь трапеции можно вычислить по различным формулам.

Найти площадь равнобедренной трапеции, зная радиус вписанной окружности и угол

Радиус вписанной окружности r

Угол трапеции α

Сообщить об ошибке

Через среднюю линию, боковую сторону и угол при основании

Чему равна площадь трапеции, если:
средняя линия m =
сторона c =
угол α =

Ответ: S =

0

ед.²

Округление ответа:

Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Пусть a и b основания трапеции. доказать что отрезок, соединяющий середины её диагоналей равен 1/2 * | а – б|?

Возьмем трапецию ABCD

Определим точку М как середину диагонали АС, точку N как середину диагонали BD. Тогда средняя линия трапеции KF будет проходить через точки M и N.

Вспомним свойство средней линии трапеции: средняя линия трапеции является параллельной основаниям и равняется полусумме их длин.

Рассмотрим треугольник ACD:

MF = AD/2

Рассмотрим треугольник BCD

NF = BC/2

Выразим MN через отрезки MF и NF:

MN = MF-NF

Подставим в формулу значения отрезков MF и NF:

MN = AD/2-BC/2 = (AD-BC)/2

Площадь трапеции через основания и два угла

[ S = frac{1}{2} left( b^{2} – a^{2} right) frac{ sin(alpha) cdot sin(beta) }{sin(alpha + beta)} ]

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.
  • Трапеция, у которой боковые стороны равны, называется равнобокой (или равнобедренной)
  • Трапеция, один из углов которой прямой, называется прямоугольной.
  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • У равнобокой трапеции углы при основании равны.
  • У равнобокой трапеции диагонали равны.
  • Если трапеция равнобокая, то около нее можно описать окружность.
  • Если сумма оснований трапеции равна сумме боковых сторон, то в нее можно вписать окружность.
  • В трапеции середины оснований, точка пересечения диагоналей и продолжения боковых сторон находятся на одной прямой.

 

Найти площадь трапеции, зная диагонали и угол между ними

Диагональ трапеции d1

Диагональ трапеции d2

Угол между диагоналями α

Источники

  • https://ru.onlinemschool.com/math/formula/trapezium/
  • https://Lifehacker.ru/kak-najti-ploshhad-trapecii/
  • https://poschitat.online/ploshad-trapecii
  • https://mnogoformul.ru/ploshhad-trapecii-formuly-i-kalkulyator-online
  • https://doza.pro/art/math/geometry/area-trapezium
  • https://geleot.ru/education/math/geometry/area/trapezoid
  • https://yandex.ru/q/question/hw.math/kak_naiti_ploshchad_trapetsii_5a22794d/?answer_id=6adac048-9ff1-4e4b-8aae-c657d64364f1&w=answer&w_question_id=1327ad2e-f410-4eda-9d70-bc19c2d134e5&w_origin=grave_unauth
  • https://calcsbox.com/post/formula-plosadi-trapecii.html

Площадь трапеции: как вычислить, формула

В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция — вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.

Площадь трапеции

Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции — это отрезок, перпендикулярный основаниям. Пусть верхнее основание — a, нижнее основание — b, а высота — h. Тогда вычислить площадь S можно по формуле:

S = ½ * (a+b) * h

т.е. взять полусумму оснований, умноженную на высоту.

Трапеция

Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию — m. Тогда

S = h * m

Решим задачу посложнее: известны длины четырех сторон трапеции — a, b, c, d. Тогда площадь отыщется по формуле:

Если известны длины диагоналей и угол между ними, то площадь ищется так:

S = ½ * d1 * d2 * sin α

где d с индексами 1 и 2 — диагонали. В данной формуле в расчете приводится синус угла.

При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:

S = ½ * (b2 — a2) * (sin α * sin β / sin(α + β))

Площадь равнобедренной трапеции

Равнобедренная трапеция — это частный случай трапеции. Ее отличие в том, что такая трапеция — это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.

Равнобедренная трапеция

Найти площадь равнобедренной трапеции можно несколькими способами.

  • Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной — с, а и b — длины оснований:
  • Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:

S = c * sin α * (a + c * cos α)

где а — верхнее основание, с — боковая сторона.

  •  Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:

S = c * sin α * (b – c * cos α)

  • Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:

S = ½ * (b2 – a2) * tg α

  • Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:

S = ½ * d2 * sin α

  • Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.

Пусть боковая сторона — с, средняя линия — m, угол — a, тогда:

S = m * c * sin α

Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет — r.

Круг в трапеции

Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:

S = 4r2 / sin α

Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):

S = D2 / sin α

Зная основания и угол, площадь равнобедренной трапеции вычисляется так:

S = a * b / sin α

(эта и последующие формулы верны только для трапеций с вписанной окружностью).

Трапеция в круге

Через основания и радиус окружности площадь ищется так:

S = r * (a + b)

Если известны только основания, то площадь считается по формуле:

Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию — m вычисляется так:

Площадь прямоугольной трапеции

Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.

Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.

Прямоугольная трапеция

Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.

  • Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:

S = (a + b) * h / 2

В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:

S = (a + b) * c / 2

  • Другой способ рассчитать площадь — перемножить длину средней линии на высоту:

S = m * h

или на длину боковой перпендикулярной стороны:

S = m * c

  • Следующий способ вычисления — через половину произведения диагоналей и синус угла между ними:

S = ½ * d1 * d2 * sin α

Прямоугольная трапеция с перпендикулярными диагоналями

Если диагонали перпендикулярны, то формула упрощается до:

S = ½ * d1 * d2

  • Еще один способ вычисления — через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.

S = (a + b) * r

Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:

S = (2r + c) * r

  • Если в трапецию вписана окружность, то площадь вычисляется так же:

S = 2m * r

где m — длина средней линии.

Площадь криволинейной трапеции

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке [a;b], осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.

Криволинейная трапеция

Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:

Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, — 180 градусам.

«Трапеция». 8-й класс

Цель:

  1. Ввести понятие трапеции, её элементов, виды трапеций.
  2. Рассмотреть некоторые свойства трапеции.
  3. Применение знаний при решении задач.

Ход урока

I. Организационный момент.

II. Актуализация знаний.

Кроссворд.

Ключевое слово кроссворда – является темой нашего урока.

  1. Любой многоугольник разделяет плоскость на две части, одна из которых
    называется …
  2. Четырехугольник, у которого противоположные стороны попарно параллельны.
  3. Отрезок, соединяющий любые две не соседние вершины многоугольника.
  4. Сумма длин всех сторон многоугольника.
  5. Две вершины многоугольника, принадлежащие одной стороне, называются…
  6. В конце урока каждый ученик ждет хорошую …
  7. Две несмежные стороны четырехугольника называются …
  8. Любой многоугольник разделяет плоскость на две части, одна из которых
    внутренняя, а другая

Ответы:

III. Новый материал.

Трапеция – (от греч. trapezion, букв. столик).

Трапеция  четырёхугольник, у которого две стороны параллельны,
а две другие – непараллельные. Отрезок, соединяющий середины боковых сторон,
называется средней линией трапеции.

Виды трапеции.

Равнобедренная – трапеция, у которой равны боковые стороны.

Прямоугольная – трапеция, один из углов которой прямой.

Средняя линия трапеции.
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Работа в группах.

Группы с четными номерами – исследуют диагонали
равнобедренной трапеции. Группы с нечетными номерами – исследуют углы
равнобедренной трапеции.

Выслушать и обсудить результаты исследования, на доске и в тетрадях записать
решения.

Свойства равнобедренной трапеции.

Теорема. В равнобедренной трапеции углы при каждом основании равны.

Доказательство.

Проведем СЕ
АВ.

ABCD – параллелограмм (АВ
СЕ, ВС
AD).

CD = AB = CE,
СDE – равнобедренный,
СDЕ =
СЕD.

АВ
СЕ, тогда
СЕD =
ВАЕ,
СDЕ =
СЕD =
ВАЕ.

ABC = 180°
– СDЕ =
180° – ВАЕ =
BCD.

Теорема. В равнобедренной трапеции диагонали равны.

Доказательство.


ABC =
DСВ (АВ = С, ВС
– общая сторона,
АВС =
ВСD) тогда АС = ВD.

Сформулируйте утверждения, обратные свойствам, и выясните их справедливость.

Признаки равнобедренной трапеции.

Выслушать и обсудить результаты исследования, на доске и в тетрадях записать
решения.

1. Если углы при основании трапеции равны, то она равнобедренная.

Доказательство.

Проведем ЕС
АВ.

ABCЕ – параллелограмм, тогда АВ
СЕ,
А =
СЕD,
СЕD –
равнобедренный (D =
СЕD), тогда СЕ = СD.

АВ = СЕ = СD, тогда АВСD – равнобедренная трапеция.

2. Если диагонали трапеции равны, то она равнобедренная.

Доказательство.

Проведем СК
ВD.

ВСКD – параллелограмм (т.к. СК
ВD, ВС
АК).

АСК – равнобедренный, т.к. АС = ВD = СК,
САD =
СDА.

СК ВD,
ВDА =
СКD, тогда
САD =
СКD.

АВD =
DСА, т.к. АС=ВD, АD
– общая сторона,
САD =
СКD, тогда АВ = СD, т.е. АВСD –
равнобедренная трапеция.

IV. Закрепление.

Решение задач по готовым чертежам.

V. Итог урока:

VI. Домашнее задание.

Параграф 44, вопросы: 10-11, №386, №388.

6 способов найти площадь трапеции

1. Как найти площадь трапеции через основания и высоту

Посчитайте сумму оснований трапеции.

Умножьте результат на высоту и поделите на два.

Иллюстрация: Лайфхакер

  • S – искомая площадь трапеции.
  • a и b – основания трапеции (её параллельные стороны).
  • h – высота трапеции.

2. Как вычислить площадь трапеции через высоту и среднюю линию

Просто умножьте высоту трапеции на среднюю линию.

Иллюстрация: Лайфхакер

  • S – искомая площадь трапеции.
  • m – средняя линия трапеции (отрезок, соединяющий середины боковых сторон).
  • h – высота трапеции.

3. Как найти площадь трапеции через диагонали и угол между ними

Умножьте одну диагональ на другую, а затем — на синус любого угла между ними.

Поделите результат на два.

Иллюстрация: Лайфхакер

  • S – искомая площадь трапеции.
  • x и y – диагонали трапеции.
  • α – любой угол между диагоналями.

4. Как найти площадь трапеции через четыре стороны

Отнимите от большего основания меньшее.

Найдите квадрат полученного числа.

Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.

Поделите полученное число на удвоенную разность оснований.

Найдите квадрат результата и отнимите его от квадрата боковой стороны.

Найдите корень из полученного числа.

Умножьте результат на половину от суммы оснований.

Иллюстрация: Лайфхакер

  • S – искомая площадь трапеции.
  • a, b – основания трапеции.
  • c, d – боковые стороны.

5. Как вычислить площадь равнобедренной трапеции через четыре стороны

Отнимите от большего основания трапеции меньшее и поделите результат на два.

Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.

Найдите корень из результата.

Умножьте полученное число на сумму оснований и поделите на два.

Иллюстрация: Лайфхакер

  • S — искомая площадь трапеции.
  • a, b — основания трапеции.
  • c, d — боковые стороны (напомним, в равнобедренной трапеции они равны).

6. Как найти площадь равнобедренной трапеции через радиус вписанной окружности и угол

Найдите квадрат радиуса и умножьте его на четыре.

Поделите результат на синус известного угла.

Иллюстрация: Лайфхакер

  • r — радиус вписанной окружности.
  • α — любой угол трапеции.

Читайте также 📐✏️🎓

В равнобедренной трапеции суммы противоположных сторон равны. Трапеция

Раздел содержит задачи по геометрии (раздел планиметрия) о трапециях. Если Вы не нашли решения задачи — пишите об этом на форуме. Курс наверняка будет дополнен.

Трапеция. Определение, формулы и свойства

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.

Трапеция — четырёхугольник, у которого пара противолежащих сторон параллельна.

Примечание. В этом случае параллелограмм является частным случаем трапеции.

Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами.

Трапеции бывают:

разносторонние
;

равнобокие
;

прямоугольные

.
Красным и коричневым цветами обозначены боковые стороны, зеленым и синим — основания трапеции.

A — равнобокая (равнобедренная, равнобочная) трапеция
B — прямоугольная трапеция
C — разносторонняя трапеция

У разносторонней трапеции все стороны разной длины, а основания параллельны.

У боковые стороны равны, а основания параллельны.

У основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона — наклонная к основаниям.

Свойства трапеции

  • Средняя линия трапеции
    параллельна основаниям и равна их полусумме
  • Отрезок, соединяющий середины диагоналей
    , равен половине разности оснований и лежит на средней линии. Его длина
  • Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
  • Точка пересечения диагоналей трапеции
    , точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
  • Треугольники, лежащие на основаниях
    трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
  • Треугольники, лежащие на боковых сторонах
    трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
  • В трапецию можно вписать окружность
    , если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
  • Отрезок, параллельный основаниям
    и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)

Углы трапеции

Углы трапеции бывают острые, прямые и тупые
.
Прямыми бывают только два угла.

У прямоугольной трапеции два угла прямые
, а два других – острый и тупой. У других видов трапеций бывают: два острых угла и два тупых.

Тупые углы трапеции принадлежат меньшему
по длине основанию, а острые – большему
основанию.

Любую трапецию можно рассматривать как усеченный треугольник
, у которого линия сечения параллельна основанию треугольника.
Важно
. Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.

Как найти стороны и диагонали трапеции

Нахождение сторон и диагоналей трапеции делают с помощью формул, которые приведены ниже:

В указанных формулах применяются обозначения, как на рисунке.

a — меньшее из оснований трапеции
b — большее из оснований трапеции
c,d — боковые стороны
h 1 h 2 — диагонали

Сумма квадратов диагоналей трапеции равна удвоенному произведению оснований трапеции плюс сумма квадратов боковых сторон (Формула 2)

Тема урока

Трапеция

Цели урока

Продолжать знакомить с новыми определениями в геометрии;
Закрепить знания об уже изученных геометрических фигурах;
Познакомить с формулировкой и доказательствами свойств трапеции;
Обучить применению свойств различных фигур при решении задач и выполнении заданий;
Продолжать развивать у школьников внимание, логическое мышление и математическую речь;
Воспитывать интерес к предмету.

Задачи урока

Вызвать интерес к знаниям по геометрии;
Продолжать упражнять школьников в решении задач;
Вызвать познавательный интерес к урокам математики.

План урока

1. Повторить материал, изученный ранее.
2. Знакомство с трапецией, ее свойствами и признаками.
3. Решение задач и выполнение заданий.

Повторение ранее изученного материала

На предыдущем уроке вы знакомились с такой фигурой, как четырехугольник. Давайте закрепим пройденный материал и ответим на поставленные вопросы:

1. Сколько углов и сторон имеет 4-х угольник?
2. Сформулируйте определение 4-х угольника?
3. Какое название носят противоположные стороны 4-х угольника?
4. Какие виды четырехугольников вам известны? Перечислите их и дайте определение каждого из них.
5. Изобразите пример выпуклого и невыпуклого четырехугольника.

Трапеция. Общие свойства и определение

Трапеция — это такая четырехугольная фигура, у которой только одна пара противолежащих сторон параллельна.

В геометрическом определении к трапеции относится такой 4-х угольник, который имеет две параллельные стороны, а две другие – нет.

Название такой необычной фигуры, как «трапеция» произошло от слова «трапезион», что в переводе с греческого языка, обозначает слово «столик», от которого произошли также слово «трапеза» и другие родственные слова.

В некоторых случаях в трапеции пара противоположных сторон параллельна, а другая его пара не является параллельной. В таком случае трапеция носит название криволинейной.

Элементы трапеции

Трапеция состоит из таких элементов, как основание, боковые линии, средняя линия и ее высота.

Основанием трапеции называют ее параллельные стороны;
Боковыми сторонами называют две другие стороны трапеции, которые не есть параллельными;
Средней линией трапеции называют отрезок, который соединяет середины его боковых сторон;
Высотой трапеции считается расстояние между ее основаниями.

Виды трапеций

Задание:

1. Сформулируйте определение равнобедренной трапеции.
2. Какая трапеция называется прямоугольной?
3. Что значит остроугольная трапеция?
4. Какая трапеция относится к тупоугольной?

Общие свойства трапеции

Во-первых, средняя линия трапеции находится параллельно основанию фигуры и равняется ее полусумме;

Во-вторых, отрезок, который соединяет середины диагоналей 4-х угольной фигуры, равняется полуразности ее оснований;

В-третьих, в трапеции параллельно лежащие прямые, которые пересекают стороны угла данной фигуры, отсекают пропорциональные отрезки от сторон угла.

В-четвертых, в любого из видов трапеции сумма углов, которые прилегают к ее боковой стороне, равны 180°.

Где еще присутствует трапеция

Слово «трапеция» присутствует не только в геометрии, она имеет более широкое применение в повседневной жизни.

Это необычное слово мы можем встретить, просматривая спортивные соревнования гимнастов, выполняющих акробатические упражнения на трапеции. В гимнастике трапецией называют спортивный снаряд, который состоит из перекладины, подвешенной на двух веревках.

Также это слово можно услышать, занимаясь в спортивном зале или в среде людей, которые занимаются бодибилдингом, так как трапеции — это не только геометрическая фигура или спортивный акробатический снаряд, но и мощные мышцы спины, которые расположены сзади за шеей.

На рисунке изображена воздушная трапеция, которую изобрел для цирковых акробатов артист Джулиус Леотард еще в девятнадцатом веке во Франции. Вначале создатель этого номера устанавливал свой снаряд на небольшой высоте, но в итоге он был перенесен под самый купол цирка.

Воздушные гимнасты в цирке выполняют трюки перелетов из трапеции на трапецию, исполняют перекрёстные полёты, проделывают в воздухе сальто-мортале.

В конном виде спорта, трапецией называют упражнение для растяжки или потягивание тела лошади, которое очень полезно и приятно для животного. Во время стойки лошади в положении трапеции работает растяжка ног животного или мышц его спины. Это красивое упражнение мы можем наблюдать во время поклона или так называемого «переднего кранча», когда лошадь глубоко прогибается.

Задание: Наведите свои примеры о том, где еще в повседневной жизни можно услышать слова «трапеция»?

А известно ли вам, что впервые в 1947 году известный французский модельер Кристиан Диор произвел показ мод, в котором присутствовал силуэт юбки-трапеции. И хотя уже прошло более шестидесяти лет, этот силуэт до сих пор в моде, и не теряет своей актуальности, и по сей день.

В гардеробе английской королевы юбка-трапеция стала непременным предметом и ее визитной карточкой.

Напоминающая геометрическую форму трапеции, юбка с одноименным названием прекрасно сочетается с любыми кофточками, блузами, топами и пиджаками. Классичность и демократичность этого популярного фасона позволяет ее носить и со строгими пиджаками и немного легкомысленными топами. В такой юбке будет уместно появляться как в офисе, так и на дискотеке.

Задачи с трапецией

Для облегчения решения задач с трапециями важно помнить несколько основных правил:

Во-первых, проведите две высоты: ВF и СК.

В одном из случаев, в результате вы получите прямоугольник – ВСFК из чего понятно, что FК=ВС.

АD=АF+FК+КD, отсюда АD=АF+ВС+КD.

К тому же сразу очевидно, что АВF и DСК – это прямоугольные треугольники.

Возможен еще такой вариант, когда трапеция не совсем стандартная, где

АD=АF+FD=АF+FК–DК=АF+ВС–DК.

Но самый простой вариант, если наша трапеция – равнобедренная. Тогда решать задачу становиться еще легче, потому что АВF и DСК – это прямоугольные треугольники, и они равны. АВ=СD, так как трапеция равнобедренная, а ВF=СК, как высоты трапеции. Из равенства треугольников следует равенство соответствующих сторон.

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.\circ\)
.

2) Т.к. \(AD\parallel BC\)
и \(BD\)
– секущая, то \(\angle DBC=\angle
BDA\)
как накрест лежащие.
Также \(\angle BOC=\angle AOD\)
как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\)
.

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\)
. Пусть \(h\)
– высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot
AD=S_{\triangle ACD}\)
. Тогда: \

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство*

1) Докажем параллельность.

Проведем через точку \(M\)
прямую \(MN»\parallel AD\)
(\(N»\in CD\)
). Тогда по теореме Фалеса (т.к. \(MN»\parallel AD\parallel BC, AM=MB\)
) точка \(N»\)
— середина отрезка \(CD\)
. Значит, точки \(N\)
и \(N»\)
совпадут.

2) Докажем формулу.

Проведем \(BB»\perp AD, CC»\perp AD\)
. Пусть \(BB»\cap MN=M», CC»\cap
MN=N»\)
.

Тогда по теореме Фалеса \(M»\)
и \(N»\)
— середины отрезков \(BB»\)
и \(CC»\)
соответственно. Значит, \(MM»\)
– средняя линия \(\triangle
ABB»\)
, \(NN»\)
— средняя линия \(\triangle DCC»\)
. Поэтому: \

Т.к. \(MN\parallel AD\parallel BC\)
и \(BB», CC»\perp AD\)
, то \(B»M»N»C»\)
и \(BM»N»C\)
– прямоугольники. По теореме Фалеса из \(MN\parallel AD\)
и \(AM=MB\)
следует, что \(B»M»=M»B\)
. Значит, \(B»M»N»C»\)
и \(BM»N»C\)
– равные прямоугольники, следовательно, \(M»N»=B»C»=BC\)
.

Таким образом:

\
\[=\dfrac12 \left(AB»+B»C»+BC+C»D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

Доказательство*

С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки \(P\)
, \(N\)
и \(M\)
лежат на одной прямой.

Проведем прямую \(PN\)
(\(P\)
– точка пересечения продолжений боковых сторон, \(N\)
– середина \(BC\)
). Пусть она пересечет сторону \(AD\)
в точке \(M\)
. Докажем, что \(M\)
– середина \(AD\)
.

Рассмотрим \(\triangle BPN\)
и \(\triangle APM\)
. Они подобны по двум углам (\(\angle APM\)
– общий, \(\angle PAM=\angle PBN\)
как соответственные при \(AD\parallel BC\)
и \(AB\)
секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\)
и \(\triangle DPM\)
. Они подобны по двум углам (\(\angle DPM\)
– общий, \(\angle PDM=\angle PCN\)
как соответственные при \(AD\parallel BC\)
и \(CD\)
секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\)
. Но \(BN=NC\)
, следовательно, \(AM=DM\)
.

2) Докажем, что точки \(N, O, M\)
лежат на одной прямой.

Пусть \(N\)
– середина \(BC\)
, \(O\)
– точка пересечения диагоналей. Проведем прямую \(NO\)
, она пересечет сторону \(AD\)
в точке \(M\)
. Докажем, что \(M\)
– середина \(AD\)
.

\(\triangle BNO\sim \triangle DMO\)
по двум углам (\(\angle OBN=\angle
ODM\)
как накрест лежащие при \(BC\parallel AD\)
и \(BD\)
секущей; \(\angle BON=\angle DOM\)
как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\)
. Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\)
. Но \(BN=CN\)
, следовательно, \(AM=MD\)
.

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\)
.

Из вершин \(B\)
и \(C\)
опустим на сторону \(AD\)
перпендикуляры \(BM\)
и \(CN\)
соответственно. Так как \(BM\perp AD\)
и \(CN\perp AD\)
, то \(BM\parallel CN\)
; \(AD\parallel BC\)
, тогда \(MBCN\)
– параллелограмм, следовательно, \(BM = CN\)
.

Рассмотрим прямоугольные треугольники \(ABM\)
и \(CDN\)
. Так как у них равны гипотенузы и катет \(BM\)
равен катету \(CN\)
, то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\)
.

2)

Т.к. \(AB=CD, \angle A=\angle D, AD\)
– общая, то по первому признаку . Следовательно, \(AC=BD\)
.

3) Т.к. \(\triangle ABD=\triangle ACD\)
, то \(\angle BDA=\angle CAD\)
. Следовательно, треугольник \(\triangle AOD\)
– равнобедренный. Аналогично доказывается, что и \(\triangle BOC\)
– равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию \(ABCD\)
, такую что \(\angle A = \angle D\)
.

Достроим трапецию до треугольника \(AED\)
как показано на рисунке. Так как \(\angle 1 = \angle 2\)
, то треугольник \(AED\)
равнобедренный и \(AE
= ED\)
. Углы \(1\)
и \(3\)
равны как соответственные при параллельных прямых \(AD\)
и \(BC\)
и секущей \(AB\)
. Аналогично равны углы \(2\)
и \(4\)
, но \(\angle 1 = \angle 2\)
, тогда \(\angle 3 = \angle 1 = \angle 2 =
\angle 4\)
, следовательно, треугольник \(BEC\)
тоже равнобедренный и \(BE = EC\)
.

В итоге \(AB = AE — BE = DE — CE = CD\)
, то есть \(AB = CD\)
, что и требовалось доказать.

2) Пусть \(AC=BD\)
. Т.к. \(\triangle AOD\sim \triangle BOC\)
, то обозначим их коэффициент подобия за \(k\)
. Тогда если \(BO=x\)
, то \(OD=kx\)
. Аналогично \(CO=y \Rightarrow AO=ky\)
.

Т.к. \(AC=BD\)
, то \(x+kx=y+ky \Rightarrow x=y\)
. Значит \(\triangle AOD\)
– равнобедренный и \(\angle OAD=\angle ODA\)
.

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\)
(\(AC=BD, \angle OAD=\angle ODA, AD\)
– общая). Значит, \(AB=CD\)
, чтд.

С такой формой как трапеция, мы встречаемся в жизни довольно часто. К примеру, любой мост который выполнен из бетонных блоков, является ярким примером. Более наглядным вариантом можно считать рулевое управление каждого транспортного средства и прочее. О свойствах фигуры было известно еще в Древней Греции
, которую более детально описал Аристотель в своем научном труде «Начала». И знания, выведенные тысячи лет назад актуальны и по сегодня. Поэтому ознакомимся с ними более детально.

Вконтакте

Основные понятия

Рисунок 1. Классическая форма трапеции.

Трапеция по своей сути является четырехугольником, состоящим из двух отрезков которые параллельны, и двух других, которые не параллельны. Говоря об этой фигуре всегда необходимо помнить о таких понятиях как: основания, высота и средняя линия. Два отрезка четырехугольника которые друг другу называются основаниями (отрезки AD и BC). Высотой называют отрезок перпендикулярный каждому из оснований (EH), т.е. пересекаются под углом 90° (как это показано на рис.1).

Если сложить все градусные меры внутренних , то сумма углов трапеции будет равна 2π (360°), как и у любого четырехугольника. Отрезок, концы которого являются серединами боковин (IF) именуют средней линей.
Длина этого отрезка составляет сумму оснований BC и AD деленную на 2.

Существует три вида геометрической фигуры: прямая, обычная и равнобокая. Если хоть один угол при вершинах основания будет прямой (например, если ABD=90°), то такой четырехугольник называют прямой трапецией. Если боковые отрезки равны (AB и CD), то она называется равнобедренной (соответственно углы при основаниях равны).

Как найти площадь

Для того, чтобы найти площадь четырехугольника
ABCD пользуются следующей формулой:

Рисунок 2. Решение задачи на поиск площади

Для более наглядного примера решим легкую задачу. К примеру, пускай верхнее и нижнее основания равны по 16 и 44 см соответственно, а боковые стороны – 17 и 25 см. Построим перпендикулярный отрезок из вершины D таким образом, чтобы DE II BC (как это изображено на рисунке 2). Отсюда получаем, что

Пускай DF – будет . Из ΔADE (который будет равнобоким), получим следующее:

Т.е., выражаясь простым языком, мы вначале нашли высоту ΔADE, которая по совместительству является и высотой трапеции. Отсюда вычислим по уже известной формуле площадь четырехугольника ABCD, с уже известным значением высоты DF.

Отсюда, искомая площадь ABCD равна 450 см³. То есть можно с уверенностью сказать, что для того, чтобы вычислить площадь трапеции потребуется только сумма оснований и длина высоты.

Важно!
При решении задача не обязательно найти значение длин по отдельности, вполне допускается, если будут применены и другие параметры фигуры, которые при соответствующем доказательстве будут равны сумме оснований.

Виды трапеций

В зависимости от того, какие стороны имеет фигура, какие углы образованы при основаниях, выделяют три вида четырехугольника: прямоугольная, разнобокая и равнобокая.

Разнобокая

Существует две формы: остроугольная и тупоугольная
. ABCD остроугольна только в том случае, когда углы при основании (AD) острые, а длины сторон разные. Если величина одного угла число Пи/2 более (градусная мера более 90°), то получим тупоугольную.

Если боковины по длине равны

Рисунок 3. Вид равнобокой трапеции

Если непараллельные стороны равны по длине, тогда ABCD называется равнобокой (правильной). При этом у такого четырехугольника градусная мера углов при основании одинакова, их угол будет всегда меньше прямого. Именно по этой причине равнобедренная никогда не делится на остроугольные и тупоугольные. Четырехугольник такой формы имеет свои специфические отличия, к числу которых относят:

  1. Отрезки соединяющие противоположные вершины равны.
  2. Острые углы при большем основании составляют 45° (наглядный пример на рисунке 3).
  3. Если сложить градусные меры противоположных углов, то в сумме они будут давать 180°.
  4. Вокруг любой правильной трапеции можно построить .
  5. Если сложить градусную меру противоположных углов, то она равна π.

Более того, в силу своего геометрического расположения точек существуют основные свойства равнобедренной трапеции
:

Значение угла при основании 90°

Перпендикулярность боковой стороны основания — емкая характеристика понятия «прямоугольная трапеция». Двух боковых сторон с углами при основании быть не может,
потому как в противном случае это будет уже прямоугольник. В четырехугольниках такого типа вторая боковая сторона всегда будет образовывать острый угол с большим основанием, а с меньшим — тупой. При этом, перпендикулярная сторона также будет являться и высотой.

Отрезок между серединами боковин

Если соединить середины боковых сторон, и полученный отрезок будет параллельный основаниям, и равен по длине половине их суммы, то образованная прямая будет средней линией.
Значение этого расстояния вычисляется по формуле:

Для более наглядного примера рассмотрим задачу с применением средней линии.

Задача. Средняя линия трапеции равна 7 см, известно, что одна из сторон больше другой на 4 см (рис.4). Найти длины оснований.

Рисунок 4. Решение задачи на поиск длин оснований

Решение. Пусть меньшее основание DC будет равно x см, тогда большее основание будет равняться соответственно (x+4) см. Отсюда, используя формулу средней линии трапеции получим:

Получается, что меньшее основание DC равно 5 см, а большее равняется 9 см.

Важно!
Понятие средней линии является ключевым при решении многих задач по геометрии. На основании её определения, строятся многие доказательства для других фигур. Используя понятие на практике, возможно более рациональное решение и поиск необходимой величины.

Определение высоты, и способы как её найти

Как уже отмечалось ранее, высота представляет собой отрезок, который пересекает основания под углом 2Пи/4 и является кратчайшим расстоянием между ними. Перед тем как найти высоту трапеции,
следует определиться какие даны входные значения. Для лучшего понимания рассмотрим задачу. Найти высоту трапеции при условии, что основания равны 8 и 28 см, боковые стороны 12 и 16 см соответственно.

Рисунок 5. Решение задачи на поиск высоты трапеции

Проведем отрезки DF и CH под прямыми углами к основанию AD.Согласно определению, каждый из них будет являться высотой заданной трапеции (рис.5). В таком случае, зная длину каждой боковины, при помощи теоремы Пифагора, найдем чему равна высота в треугольниках AFD и BHC.

Сумма отрезков AF и HB равна разности оснований, т.е.:

Пускай длина AF будет равняться x cм, тогда длина отрезка HB= (20 – x)см. Как было установлено, DF=CH , отсюда .

Тогда получим следующее уравнение:

Получается, что отрезок AF в треугольнике AFD равен 7,2 см, отсюда вычислим по той же теореме Пифагора высоту трапеции DF:

Т.е. высота трапеции ADCB будет равна 9,6 см. Как можно убедиться, что вычисление высоты — процесс больше механический, и основывается на вычислениях сторон и углов треугольников.
Но, в ряде задач по геометрии, могут быть известны только градусы углов, в таком случае вычисления будут производиться через соотношение сторон внутренних треугольников.

Важно!
В сущности трапецию часто рассматривают как два треугольника, или как комбинацию прямоугольника и треугольника. Для решения 90% всех задач, встречаемых в школьных учебниках, свойства и признаки этих фигур. Большинство формул, для этого ГМТ, выведены полагаясь на «механизмы» для указанных двух типов фигур.

Как быстро вычислить длину основания

Перед тем, как найти основание трапеции необходимо определить какие параметры уже даны, и как их рационально использовать. Практическим подходом является извлечение длины неизвестного основания из формулы средней линии. Для более ясного восприятия картинки покажем на примере задачи, как это можно сделать. Пускай известно, что средняя линия трапеции составляет 7 см, а одно из оснований 10 см. Найти длину второй основы.

Решение: Зная, что средняя линия равна половине суммы основ, можно утверждать, что их сумма равна 14 см.

(14 см = 7 см × 2). Из условия задачи, мы знаем, что одно из равно 10 см, отсюда меньшая сторона трапеции будет равна 4 см (4 см = 14 – 10).

Более того, для более комфортного решения задач подобного плана, рекомендуем хорошо выучить такие формулы из области трапеции как
:

  • средняя линия;
  • площадь;
  • высота;
  • диагонали.

Зная суть (именно суть) этих вычислений можно без особого труда узнать искомое значение.

Видео: трапеция и ее свойства

Видео: особенности трапеции

Вывод

Из рассмотренных примеров задач можно сделать нехитрый вывод, что трапеция, в плане вычисления задач, является одной из простейших фигур геометрии. Для успешного решения задач прежде всего не стоит определиться с тем, какая информация известна об описываем объекте, в каких формулах их можно применить, и определиться с тем, что требуется найти. Выполняя этот простой алгоритм, ни одна задача с применением этой геометрической фигуры не составит усилий.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

свойства и признаки: площадь, средняя линия прямоугольной, равнобедренной, как найти высоту

С такой формой как трапеция, мы встречаемся в жизни довольно часто. К примеру, любой мост который выполнен из бетонных блоков, является ярким примером. Более наглядным вариантом можно считать рулевое управление каждого транспортного средства и прочее. О свойствах фигуры было известно еще в Древней Греции, которую более детально описал Аристотель в своем научном труде «Начала». И знания, выведенные тысячи лет назад актуальны и по сегодня. Поэтому ознакомимся с ними более детально.

Основные понятия

Рисунок 1. Классическая форма трапеции.

Трапеция по своей сути является четырехугольником, состоящим из двух отрезков которые параллельны, и двух других, которые не параллельны. Говоря об этой фигуре всегда необходимо помнить о таких понятиях как: основания, высота и средняя линия. Два отрезка четырехугольника которые параллельны друг другу называются основаниями (отрезки AD и BC). Высотой называют отрезок перпендикулярный каждому из оснований (EH), т.е. пересекаются под углом 90° (как это показано на рис.1).

Если сложить все градусные меры внутренних углов, то сумма углов трапеции будет равна 2π (360°), как и у любого четырехугольника. Отрезок, концы которого являются серединами боковин (IF) именуют средней линей. Длина этого отрезка составляет сумму оснований BC и AD деленную на 2.

Существует три вида геометрической фигуры: прямая, обычная и равнобокая. Если хоть один угол при вершинах основания будет прямой (например, если ABD=90°), то такой четырехугольник называют прямой трапецией. Если боковые отрезки равны (AB и CD), то она называется равнобедренной (соответственно углы при основаниях равны).

Как найти площадь

Для того, чтобы найти площадь четырехугольника ABCD пользуются следующей формулой:

Рисунок 2. Решение задачи на поиск площади

Для более наглядного примера решим легкую задачу. К примеру, пускай верхнее и нижнее основания равны по 16 и 44 см соответственно, а боковые стороны – 17 и 25 см. Построим перпендикулярный отрезок из вершины D таким образом, чтобы DE II BC (как это изображено на рисунке 2). Отсюда получаем, что

Пускай DF – будет высотой. Из ΔADE (который будет равнобоким), получим следующее:

Т.е., выражаясь простым языком, мы вначале нашли высоту ΔADE, которая по совместительству является и высотой трапеции. Отсюда вычислим по уже известной формуле площадь четырехугольника ABCD, с уже известным значением высоты DF.

Отсюда, искомая площадь ABCD равна 450 см³. То есть можно с уверенностью сказать, что для того, чтобы вычислить площадь трапеции потребуется только сумма оснований и длина высоты.

[stop]Важно! При решении задача не обязательно найти значение длин по отдельности, вполне допускается, если будут применены и другие параметры фигуры, которые при соответствующем доказательстве будут равны сумме оснований.[/stop]

Виды трапеций

В зависимости от того, какие стороны имеет фигура, какие углы образованы при основаниях, выделяют три вида четырехугольника: прямоугольная, разнобокая и равнобокая.

Разнобокая

Существует две формы: остроугольная и тупоугольная. ABCD остроугольна только в том случае, когда углы при основании (AD) острые, а длины сторон разные. Если величина одного угла число Пи/2 более (градусная мера более 90°), то получим тупоугольную.

Если боковины по длине равны

Рисунок 3. Вид равнобокой трапеции

Если непараллельные стороны равны по длине, тогда ABCD называется равнобокой (правильной). При этом у такого четырехугольника градусная мера углов при основании одинакова, их угол будет всегда меньше прямого. Именно по этой причине равнобедренная никогда не делится на остроугольные и тупоугольные. Четырехугольник такой формы имеет свои специфические отличия, к числу которых относят:

  1. Отрезки соединяющие противоположные вершины равны.
  2. Острые углы при большем основании составляют 45° (наглядный пример на рисунке 3).
  3. Если сложить градусные меры противоположных углов, то в сумме они будут давать 180°.
  4. Вокруг любой правильной трапеции можно построить окружность.
  5. Если сложить градусную меру противоположных углов, то она равна π.

 

Более того, в силу своего геометрического расположения точек существуют основные свойства равнобедренной трапеции:

  1. Если диагонали пересекаются под углом, то половина суммы оснований будет равна длине высоты.
  2. В случае, когда в правильную трапецию построена, или может быть построена, окружность, то квадрат высоты равен произведению величин оснований.
  3. Ось симметрии и средняя линия трапеции являются одним и тем же ГМТ.
  4. Когда диагонали пересекаются под прямым углом, тогда для вычисления площади потребуется формула: 
  5. Окружность вписанная в трапецию, делает величину средней линии равной боковой.

Значение угла при основании 90°

Перпендикулярность боковой стороны основания — емкая характеристика понятия «прямоугольная трапеция». Двух боковых сторон с углами при основании быть не может, потому как в противном случае это будет уже прямоугольник. В четырехугольниках такого типа вторая боковая сторона всегда будет образовывать острый угол с большим основанием, а с меньшим — тупой. При этом, перпендикулярная сторона также будет являться и высотой.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Отрезок между серединами боковин

Если соединить середины боковых сторон, и полученный отрезок будет параллельный основаниям, и равен по длине половине их суммы, то образованная прямая будет средней линией. Значение этого расстояния вычисляется по формуле:

Для более наглядного примера рассмотрим задачу с применением средней линии.

Задача. Средняя линия трапеции равна 7 см, известно, что одна из сторон больше другой на 4 см (рис.4). Найти длины оснований.

Рисунок 4. Решение задачи на поиск длин оснований

Решение. Пусть меньшее основание DC будет равно x см, тогда большее основание будет равняться соответственно (x+4) см. Отсюда, используя формулу средней линии трапеции получим:

Получается, что меньшее основание DC равно 5 см, а большее равняется 9 см.

[stop]Важно! Понятие средней линии является ключевым при решении многих задач по геометрии. На основании её определения, строятся многие доказательства для других фигур. Используя понятие на практике, возможно более рациональное решение и поиск необходимой величины.[/stop]

Определение высоты, и способы как её найти

Как уже отмечалось ранее, высота представляет собой отрезок, который пересекает основания под углом 2Пи/4 и является кратчайшим расстоянием между ними. Перед тем как найти высоту трапеции, следует определиться какие даны входные значения. Для лучшего понимания рассмотрим задачу. Найти высоту трапеции при условии, что основания равны 8 и 28 см, боковые стороны 12 и 16 см соответственно.

Рисунок 5. Решение задачи на поиск высоты трапеции

Решение:

Проведем отрезки DF и CH под прямыми углами к основанию AD.Согласно определению, каждый из них будет являться высотой заданной трапеции (рис.5). В таком случае, зная длину каждой боковины, при помощи теоремы Пифагора, найдем чему равна высота в треугольниках AFD и BHC.

Сумма отрезков AF и HB равна разности оснований, т.е.:

Пускай длина AF будет равняться x cм, тогда длина отрезка HB= (20 – x)см. Как было установлено, DF=CH , отсюда 

.

Тогда получим следующее уравнение:

Получается, что отрезок AF в треугольнике AFD равен 7,2 см, отсюда вычислим по той же теореме Пифагора высоту трапеции DF:

Т.е. высота трапеции ADCB будет равна 9,6 см. Как можно убедиться, что вычисление высоты — процесс больше механический, и основывается на вычислениях сторон и углов треугольников. Но, в ряде задач по геометрии, могут быть известны только градусы углов, в таком случае вычисления будут производиться через соотношение сторон внутренних треугольников.

[stop]Важно! В сущности трапецию часто рассматривают как два треугольника, или как комбинацию прямоугольника и треугольника. Для решения 90% всех задач, встречаемых в школьных учебниках, свойства и признаки этих фигур. Большинство формул, для этого ГМТ, выведены полагаясь на «механизмы» для указанных двух типов фигур.[/stop]

Как быстро вычислить длину основания

Перед тем, как найти основание трапеции необходимо определить какие параметры уже даны, и как их рационально использовать. Практическим подходом является извлечение длины неизвестного основания из формулы средней линии. Для более ясного восприятия картинки покажем на примере задачи, как это можно сделать. Пускай известно, что средняя линия трапеции составляет 7 см, а одно из оснований 10 см. Найти длину второй основы.

Решение: Зная, что средняя линия равна половине суммы основ, можно утверждать, что их сумма равна 14 см.

(14 см = 7 см × 2). Из условия задачи, мы знаем, что одно из равно 10 см, отсюда меньшая сторона трапеции будет равна 4 см (4 см = 14 – 10).

Более того, для более комфортного решения задач подобного плана, рекомендуем хорошо выучить такие формулы из области трапеции как:

  • средняя линия;
  • площадь;
  • высота;
  • диагонали.

Зная суть (именно суть) этих вычислений можно без особого труда узнать искомое значение.

Видео: трапеция и ее свойства

Видео: особенности трапеции

Вывод

Из рассмотренных примеров задач можно сделать нехитрый вывод, что трапеция, в плане вычисления задач, является одной из простейших фигур геометрии. Для успешного решения задач прежде всего не стоит определиться с тем, какая информация известна об описываем объекте, в каких формулах их можно применить, и определиться с тем, что требуется найти. Выполняя этот простой алгоритм, ни одна задача с применением этой геометрической фигуры не составит усилий.

Как найти основание и боковую сторону равнобедренной трапеции


  1.   Сторона (основание) равнобедренной трапеции, если известно другое основание и средняя линия трапеции  

, — базы

— средняя линия

Вычислить основание равнобедренной трапеции, если задана средняя линия и другое основание ( a b ):

  2.  Все четыре стороны равнобедренной трапеции, если вы знаете высоту, угол у основания и другие стороны  

— база меньшая

— большая база

— нога

— уголок у основания

— высота

Вычислить боковую сторону (опору) трапеции, если задан угол в основании, высоте или основаниях ( c ):

Вычислить основание трапеции, если задан угол при основании, высота и другое основание ( a b ):

Вычислить основание трапеции, если задан угол в основании, боковой стороне (ножке) и другом основании ( a b ):

  3.  Основания равнобедренной трапеции, если известны высота, диагонали и угол между диагоналями  

— база меньшая

— большая база

— нога

— диагональ

, — углы между диагоналями

— высота

Вычислить сторону (основание) трапеции, если задана диагональ, боковая сторона (ножка) и другое основание ( a b ):

Рассчитайте боковую сторону (опору) трапеции, если заданы диагональ и основания ( c ):

Вычислить сторону (основание) трапеции, если заданы диагональ, высота, угол между диагоналями и основанием ( a b ):

* Верно в данном случае:

  4.  Стороны равнобедренной трапеции, если вам известна площадь трапеции  

, — базы

— нога

— средняя линия

, — уголки у основания

— высота

— площадь

Вычислить сторону (основание) трапеции, если задана площадь трапеции ( a b ):

Расчет боковой стороны (ножки) трапеции, если задана площадь трапеции ( c ):

* Верно в данном случае:



доказательств для равнобедренных трапеций — видео и стенограмма урока

Базовые углы

Углы, образованные между непараллельными сторонами и параллельными сторонами, называемые базовыми углами , равны в равнобедренной трапеции.В трапеции газона Ирен ABCD углы C и D равны.

Чтобы доказать эту теорему, давайте проведем линию CE , параллельную AD , так, чтобы ADCE превратился в параллелограмм.

Параллелограмм ADCE

В этом параллелограмме мы знаем, что линия AD = линия CE .Мы также знаем, что строка AD = строка BC , поэтому мы также знаем, что строка BC = строка CE .

Теперь, поскольку линия BC и линия CE равны, треугольник BCE становится равнобедренным. Следовательно, углы CBE и CEB равны.

Мы понимаем, что линия AD и линия CE параллельны, а линия AE является поперечной.Таким образом, сумма внутренних углов на одной стороне, угла DAE и угла CEA составляет 180 градусов.

Итак,

Следовательно, углы DAB и CBA равны.

Далее мы знаем, что ADCE — параллелограмм, поэтому противоположные углы будут равны.

Теперь углы CBE и BCD будут равны, потому что они являются альтернативными внутренними углами для параллельных линий AE и CD .

Мы уже знаем, что углы CEB и CEB равны. Следовательно,

Таким образом, доказано, что углы основания равнобедренной трапеции равны.

Диагонали

Диагонали равнобедренной трапеции равны по длине. Итак, в равнобедренной трапеции ABCD Ирен диагонали AC и BD равны.

Диагонали равнобедренной трапеции

Чтобы доказать эту теорему, давайте сосредоточимся на двух образованных треугольниках: DAC и CBD . Здесь мы знаем, что линия AD = BC , углы ADC и BCD равны, а сторона CD является общей.Ирен напоминает свойство треугольников сторона-угол-сторона : если в двух треугольниках две стороны и их угол первого треугольника конгруэнтны двум сторонам и их углу второго, то два треугольника конгруэнтны. .

Следовательно, треугольники DAC и CBD совпадают.

Следовательно, остальные соответствующие стороны равны, AC = BD .Таким образом, диагонали равны.

Противоположные углы

Сумма противоположных углов равнобедренной трапеции Ирен составляет 180 градусов. Она может доказать это, зная, что угол A равен углу B , а угол C равен углу D .

Она также знает, что AB параллелен CD , что делает пары углов A и D и B и C внутренними углами на одной стороне поперечной.Это означает, что эти пары являются дополнительными или их сумма равна 180 градусам.

Теперь, заменяя равные углы,

Таким образом, она доказывает, что противоположные углы являются дополнительными в равнобедренной трапеции.

Основываясь на углах основания, диагонали и сумме противоположных углов, она может посадить свой сад и быть уверенной, что его форма действительно представляет собой равнобедренную трапецию.

Резюме урока

На этом уроке вы узнали, что трапеция с равными непараллельными сторонами — это равнобедренная трапеция . Затем мы рассмотрели важные теоремы, связанные с ними, и подробно доказали их.

  • Базовые углы (углы, образованные между непараллельными сторонами и параллельными сторонами) равны равнобедренной трапеции.
  • Диагонали равнобедренной трапеции равны по длине.
  • Сумма противоположных углов равнобедренной трапеции равна 180 градусам.

Равнобедренные трапеции, углы, стороны, диагонали и другие свойства. Объясняется фотографиями и практическими задачами

  • Базовые уголки
  • Диагонали

Отличительной чертой этого особого типа трапеции является то, что две непараллельные стороны (XW и YZ ниже) совпадают.

Уголки основания

Углы основания равнобедренной трапеции совпадают.

Задача 1

Если вы знаете, что угол BAD равен 44 °, какова мера $$ \ angle ADC $$?

Покажи ответ

Угол $$ \ angle ADC = 44 ° $$, так как базовые углы совпадают

Задача 2

$$ \ angle ABC = 130 $$, какой еще угол составляет 130 градусов?

Покажи ответ

Single $$ \ angle ADC = 4 ° $$, так как базовые углы совпадают

Задача 3

Какое значение j в равнобедренной трапеции ниже?

Покажи ответ

Дж = 5

  • Базовые уголки
  • Диагонали

Диагонали равнобедренной трапеции

Задача 3

Диагонали равнобедренной трапеции совпадают.Какое значение x ниже? (используйте свои знания о диагоналях!)

Покажи ответ

Х = 9

назад к четырехугольникам

рядом с пареллограммами

Реклама


Калькулятор трапеций

: найдите A и P

Добро пожаловать в калькулятор трапеций Omni , где мы узнаем все об этих четырехсторонних формах.Мы покажем вам , как рассчитать площадь трапеции, , как найти высоту трапеции, или как выглядит формула периметра трапеции . Также мы уделим время описанию некоторых особых типов четырехугольника: равнобедренной трапеции и правой трапеции. И не волнуйтесь; мы не оставляем камня на камне — мы даже упоминаем в калькуляторе срединный и трапециевидный углы.

Похоже, есть несколько вещей, которые нужно обсудить, так что приступим, ладно?

Что такое трапеция?

Трапеция — это четырехугольник (форма с четырьмя сторонами), у которого есть по крайней мере одна пара противоположных сторон, параллельных друг другу.Обратите внимание, что мы сказали « по крайней мере, одна пара сторон» — если фигура имеет две такие пары, это просто прямоугольник. И не заблуждайтесь — каждый прямоугольник — это трапеция . Обратное, конечно, неверно.

Две параллельные стороны обычно называются основаниями . Обычно мы рисуем трапеции так, как мы делали выше, что может подсказывать, почему мы часто проводим различие между ними, говоря нижний и верхний базовый . Две другие непараллельные стороны называются катетами (аналогично двум сторонам прямоугольного треугольника).

Есть несколько особых случаев трапеций, которые мы хотели бы здесь упомянуть.

  1. Прямоугольник
    Мы уже упоминали об этом в начале этого раздела — это трапеция, которая имеет две пары противоположных сторон, параллельных друг другу .

  2. Равнобедренная трапеция
    Трапеция, ног которой имеют одинаковую длину (аналогично тому, как мы определяем равнобедренные треугольники).

  3. Правая трапеция
    Трапеция, у которой одна нога перпендикулярна основанию .Во-первых, обратите внимание, что здесь нам требуется только одна из ветвей, чтобы удовлетворить этому условию — другая может или не может. Во-вторых, обратите внимание на то, что если нога перпендикулярна одному из оснований, то она автоматически перпендикулярна и другой, так как обе ноги параллельны.

Имея в виду эти особые случаи, внимательный глаз может заметить, что прямоугольников удовлетворяют условиям 2 и 3 . Действительно, если бы кто-то не знал, что такое прямоугольник, мы могли бы просто сказать, что это равнобедренная трапеция, которая также является правой трапецией.Довольно причудливое определение по сравнению с обычным, но оно определенно заставляет нас звучать утонченно, не так ли?

Прежде чем мы перейдем к следующему разделу, позвольте нам упомянуть еще два линейных сегмента, которые есть у всех трапеций.

Высота трапеции — это расстояние между основаниями, то есть — длина линии, соединяющей два , которая перпендикулярна обоим. Фактически, это значение имеет решающее значение, когда мы обсуждаем, как вычислить площадь трапеции, и поэтому получает отдельный отдельный раздел.

Медиана трапеции — это линия, соединяющая середины ног. Другими словами, с учетом приведенного выше рисунка, это линия, разрезающая трапецию по горизонтали пополам . Он всегда параллелен основаниям и с обозначениями, как на рисунке, у нас есть медиана = (a + b) / 2 . Если вам интересно название, обязательно ознакомьтесь с калькулятором медианы Omni (примечание: он не касается трапеций).

Хорошо, мы достаточно хорошо узнали нашу форму ; мы даже видели одну формулу трапеции! Давайте сделаем еще один шаг и попробуем еще лучше разобраться в теме.Мы начинаем этот углубленный анализ с формулы периметра трапеции и ее внутренних углов .

Формула периметра трапеции и углы трапеции

Периметр многоугольника равен сумме длин его сторон . Для героя сегодняшней статьи история ничем не отличается. Используя обозначения, как на рисунке в первом разделе (и в калькуляторе трапеций), мы выводим формулу периметра трапеции как:

P = a + b + c + d .

Довольно просто, не правда ли?

Далее, поговорим об углах .Как и в любом другом четырехугольнике, сумма углов трапеции составляет 360 градусов (или радиан). Однако условие трапеции (т.е. наличие пары параллельных сторон) накладывает дополнительных свойств на отдельные. Если быть точным, пара углов вдоль одной из ножек — это дополнительные углы. Это означает, что их сумма должна равняться 180 градусов (или π радиан), что в обозначениях из рисунка в первом разделе означает:

α + 𝛾 = β + δ = 180 ° .

Обратите внимание, что наш инструмент также упоминает углы в нижнем наборе переменных полей. Таким образом, он также может служить калькулятором угла трапеции, когда это числа, которые мы ищем. И действительно, они часто пригодятся — они играют важную роль , когда мы учимся определять высоту трапеции, и это, в свою очередь, появляется при изучении того, как вычислить площадь трапеции. Однако начнем с последнего вопроса.

Как рассчитать площадь трапеции

Давайте снова возьмем картинку из первого раздела, чтобы вам не приходилось пролистывать всю статью всякий раз, когда вы хотите вспомнить обозначения.

Площадь формулы трапеции имеет следующий вид:

A = (a + b) * h / 2 .

Обратите внимание, что действительно, как мы уже упоминали несколько раз, очень важно знать, как найти высоту трапеции для вычисления ее площади. Кроме того, ноги никогда не фигурируют в уравнении. Конечно, они определяют форму нашего четырехугольника, но их длина используется только в формуле периметра трапеции, которую мы обсуждали в предыдущем разделе.

Наконец, давайте проясним, что по порядку операций не имеет значения, в какой момент мы делим на 2 в указанной выше области формулы трапеции.Мы можем либо сначала вычислить (a + b) * h , а затем разделить все на 2 , либо сначала найти h / 2 , и только затем умножить его на (a + b) . Фактически, зоркий глаз заметит, что (a + b) / 2 — это , медианное значение , которое мы упомянули в первом разделе. Другими словами, в качестве альтернативы мы можем использовать формулу A = median * h , чтобы найти A .

Хорошо, мы научились рассчитывать площадь трапеции, и все это кажется простым, если мы предоставим нам все данные на пластине. Но что, если они этого не сделают? Базы достаточно простые, но как насчет х ? Что ж, пора посмотреть , как найти высоту трапеции.

Как найти высоту трапеции

Решающий факт, который мы используем для определения высоты трапеции, заключается в том, что — это отрезок прямой, перпендикулярный основанию . Это дает нам прямой угол в обеих конечных точках, что позволяет нам использовать прямоугольные треугольники. И первое, что приходит в голову, когда мы слышим фразу прямоугольный треугольник , это, конечно же, теорема Пифагора.

Давайте проведем линию от одной из верхних вершин , которая падает на нижнее основание и под углом 90 градусов. (Обратите внимание, как для тупых трапеций, подобных изображенной на правом рисунке выше, высота h выходит за пределы формы, то есть на линию, содержащую a , а не саму a . для таких четырехугольников.) Длина этой линии равна высоте нашей трапеции, поэтому именно то, что мы ищем. Обратите внимание на то, как мы нарисовали линию , она образует прямоугольный треугольник с одной из сторон c или d (в зависимости от того, какую верхнюю вершину мы выбрали).

Если у нас есть длина ноги трапеции и мы можем вычислить другую сторону прямоугольного треугольника (например, e или f на картинке выше), то мы знаем, как найти высоту трапеции — воспользуемся теоремой Пифагора .Однако есть еще один способ его вычисления.

Если вы немного разбираетесь в тригонометрии, вы сможете найти высоту , используя внутренний угол трапеции . Чтобы быть точным, глядя на углы трапеции в нашем калькуляторе (то есть на обозначения на рисунке), мы можем использовать определение тригонометрических функций, чтобы написать:

h = c * sin (α) = d * sin (δ) ,

, где sin — синусоидальная функция. На самом деле, может случиться так, что угол равен 30 , 45 или 60 градусов, и в этом случае мы можем просто использовать свойства специальных прямоугольных треугольников с такими внутренними углами.

Наконец, отметим, что весь этот поиск h очень прост в особом случае — когда у нас есть , это правая трапеция . Тогда высота нашей трапеции — это просто нога, лежащая рядом с прямым углом. Обратите внимание, что в этом случае приведенная выше тригонометрическая формула все еще работает, поскольку sin (90 °) = 1 .

Уф, это было много теории . Пришло время использовать эти формулы трапеций и посмотреть , как на практике вычислить площадь и периметр трапеции .

Пример: использование калькулятора трапеций

Давайте посмотрим на , как найти площадь и периметр трапеции со сторонами и углами, обозначенными как в калькуляторе трапеций, и следующими данными:

a = 8 дюймов , b = 5 дюймов , d = 3 дюйма , α = 90 ° , δ = 45 ° .

Вроде не много, но давайте посмотрим, что мы можем здесь сделать . Однако во-первых, давайте заметим, что наш калькулятор трапеций может легко справиться с нашей проблемой даже с таким небольшим количеством информации.Действительно, если мы введем вышеуказанные числа в наш инструмент (обратите внимание, как мы можем переключиться на другие единицы, щелкнув по ним и выбрав подходящий из списка), заполнит все остальные поля . Например, в качестве калькулятора угла трапеции он будет использовать идентификаторы, упомянутые во втором разделе, для вычисления β и 𝛾 . Также обратите внимание, что мы можем дополнительно перейти в расширенный режим и увидеть длину медианы.

Если инструмент может это сделать, то сможем и мы! Давайте посмотрим, как вычислить площадь и периметр трапеции вручную.

Прежде всего, обратите внимание, что мы имеем дело с правой трапецией , так как α = 90 ° (фактически, у нас также есть β = 90 ° ). Это означает, что сторона c перпендикулярна основаниям и, следовательно, равна высоте c = h . Однако мы не знаем c , поэтому нам нужно будет найти еще .

Для этого нарисуйте высоту нашей трапеции , которая идет от вершины между b и d .Вместе с d и частью a , он образует прямоугольный треугольник . Более того, нам известен один из его углов — δ = 45 ° . Значит, это один из частных случаев — это половина квадрата. Следовательно, h равно нижней стороне треугольника, а d фактически является диагональю квадрата, что означает, что:

h = d / √2 = 3 дюйма / √2 = 1,5√2 дюйма ≈ 2,1213 дюйма

(последнее равенство получаем, рационализируя знаменатель).

Теперь у нас есть все необходимое , чтобы найти A . Вспомните из специального раздела, как рассчитать площадь трапеции, и используйте эту информацию для получения

A = (a + b) * h / 2 = (8 дюймов + 5 дюймов) * 1,5√2 дюйма / 2 = 9,75√2 дюйма² ≈ 13,789 дюйма² .

Мы также собрали все данные, чтобы найти P , так как c = h = 1,5√2 в . По формуле периметра трапеции из второго сечения получаем

P = a + b + c + d = 8 дюймов + 5 дюймов + 1.5√2 дюйма + 3 дюйма = 16 + 1,5√2 дюйма ≈ 18,12 дюйма .

Неплохо, правда? Стороны и углы, которые мы получили вначале, казались довольно случайными, но нам удалось найти им хорошее применение. Если вы чувствуете, что жаждет большего количества геометрии и формул , обязательно ознакомьтесь с другими калькуляторами 2D-форм на веб-сайте Omni — у нас есть все!

РЕШЕНО: Диагонали равнобедренной трапеции ar…

Стенограмма видео

Хорошо, это небольшая забавная задача, в которой мы имеем дело с равнобедренной трапецией, которую вы должны знать, что такое трапеция.На данный момент это четырехугольник, что означает, что есть четыре стороны, и две из них параллельны, что мы видим как основание Опера в верхнем основании. Хорошо. И это я видел Seles, что означает, что если бы вы гипотетически разделили его посередине, но это идеальная линия посередине, у нас есть две симметричные стороны с каждой стороны. Это означает, что эти два угла здесь, по сути, одинаковы и с легкостью одинаковы. Это то, что мы знали бы, если бы действительно, гм, продолжали все вычислять, потому что именно это делает линии идеально, эм, зеркальным отображением друг друга.Так что давайте избавимся от этого крайнего срока. Это было просто доказательством того, что это равнобедренная трапеция. Так что я просто напишу. Цена колеблется. Итак, мы это знаем, и именно так я смог примерно проиллюстрировать сторону ловушки ниже, нам сказали несколько вещей об их различных значениях, сказали, что их, ммм, диагонали Что правильно, D равно 17, и есть две диагонали в форме трапеции. Это будет от одного угла до противоположного угла на другой базе. Итак, представьте, что это прямая линия.Вероятно, это не так. Все в порядке. Это просто для иллюстрации. Итак, эти черные линии 17 и общей длины, а затем нам говорят, что высота равна восьми. Так что это будет, если вы сделаете перпендикулярный угол. Так что сделайте прямой угол. От верхнего основания основания Лауры будет, мм, 88 Мы не знаем. На самом деле это не имеет значения. Сейчас мы просто называем это единицами. Значит, восемь. Коротышка, любая из этих пунктирных красных линий. Вы думаете об этом как о высоте, если она перпендикулярна.Так что пока для создания прямых углов. Так что я просто избавлюсь от них. Не хочу, чтобы здесь меня опережали слишком много беспорядка на треугольнике или трапеции. А потом нам сказали, что верхние базы девять, которые, если вы посмотрите на верхнюю базу, я просто пересушу и посиню. Так что с оперным басом все в порядке, ты за верхний. Было девять. Хорошо, так замечательно. Итак, у нас есть эта информация, которая действительно полезна, и нам говорят найти периметр, который будет периметром всех сторон, вместе взятых.Вы думаете о периметре места преступления. Они установят границу вокруг места преступления. И это была бы куча разных линий, если бы вы нарисовали ее, и это был бы периметр. Так каков будет периметр? Итак, чтобы сделать это, нам нужно увидеть то, что нам нужно выяснить. Итак, вы знаете, что один из самых больших — девять, об этом сказали в начале задачи. Это верхняя база. Итак, нам нужно найти сторону, эту сторону, а затем эту сторону, чтобы мы могли сложить их все вместе.Кажется немного пугающим, но на самом деле это действительно забавное упражнение, потому что нам нужно концептуализировать, как рисовать линии, чтобы образовывать треугольники, потому что тогда мы можем использовать сыворотку Пифагора, которая представляет собой квадрат плюс B в квадрате, равный C в квадрате. Вы можете использовать это, чтобы найти а, привет, новости о горшке или недостающую сторону в треугольниках. И мы могли бы применить к трапеции. Так как же нарисовать треугольники? Опять ремешок? Право на треугольники? Что ж, мы могли бы сделать это, нарисовав высоту в разных местах, потому что это сделает ее прямыми углами.Итак, первое место, где я бы нарисовал треугольник, это прямо здесь или на другой стороне. Это не имеет значения здесь или здесь снова. Давайте представим эти воздушные прямые углы, потому что это ключ, потому что вы только что нарисовали треугольник, и это очень ценно. Как только мы сможем осмыслить, как решить эту проблему, я просто нарисую отдельно треугольник, который я только что сделал, что-то вроде этого, где странность шумихи, которая противоположна прямому углу. Это диагональ, которую мы видим здесь черным цветом. Это диагональ. Нам сказали, что это 17.Сторона справа — это высота, равная восьми. Итак, теперь у нас есть то, что нам нужно решить для одной стороны, верно? Давайте просто назовем это здесь. Так как же решить эту проблему? Итак, High Partners в формуле возведено в квадрат 17, а затем у нас это называется квадратом плюс восемь в квадрате, равным C в квадрате, поэтому я просто очень быстро вставлю математику, чтобы мы могли вычислить, чего не хватает. Сторона 17 в квадрате. Боже, я должен воткнуть его. 289 минус 64 269. Пытки 89. Приношу свои извинения. 289 минус 64. Потому что это результат возведения в квадрат 825 в квадрате до 25.Будет 15. Так что я просто подключаю его к калькулятору. Вы могли бы сделать то же самое. Просто убедитесь, что вы уравняли эти значения. Вычтите 64, чтобы получить квадратное значение, потому что это значение квадрата. Это весело. К черту это. Итак, это 15, Итак, это значение 15, что прекрасно. Итак, почему это так полезно? Во-первых, потому что мы нашли одну из сторон, так что это очень полезно. О, но мы не нашли всю сторону трапеции, потому что у нас все еще есть эта часть, о которой мы не знаем.Так как же решить эту проблему? Ну, мы знаем, что верхняя база — девять. Итак, если бы мы нарисовали этот квадрат, потому что мы сделали квадрат, если вы очень внимательно посмотрите на высоты, у нас здесь девять, а затем у нас есть стороны, или это не квадрат, это прямоугольник. Мои извинения. У нас восемь лет и восемь лет, потому что это были высоты. И внизу у нас тоже должно быть девять. Но мы знаем, что вся эта длина, да, это то, что мы сейчас, давайте сделаем это очень ясно. Простите. Вы ведь знаете, что это порция 15, не так ли? Потому что здесь получается треугольник.Итак, вся эта часть — 15, хотя эта часть — девять. Итак, как мы решаем эту часть, это ключ. Итак, вам нужно сделать 15 минус девять, на которые мы должны дать ответ. Шесть. Верно. Итак, это шесть. Это составляет шесть из 15 общей длины, потому что мы знаем эту часть прямоугольников девять, а это 15, всего шесть. Нам просто нужно добавить 6 к 15, потому что я снова высушу. Вот маленький прямоугольник. Это не соответствует масштабу. Это просто для удобства. Итак, если это девять, которые мы видели, значит, это шесть, то это тоже должно быть шесть.Вы знаете, что это 15 плюс шесть равно 21. Прекрасно. Итак, нижняя часть трапеции — 21. Это показывает, что мой рисунок определенно не в масштабе, но это совершенно нормально. Итак, вы знаете, это 15. Так что просто немного очистим это и напишем, что новая длина стороны равна 21, так что мы почти у цели. Итак, теперь нам просто нужно найти этих двух, помимо того, что у нас есть здесь. Так как бы нам это сделать? Что ж, давайте попробуем это продумать. У нас есть еще какие-нибудь треугольники, которые мы могли бы составить? На самом деле, мы уже нарисовали один здесь, но давайте сделаем так, чтобы вам было легче его увидеть.Я поеду сюда. Итак, если вы посмотрите сюда, мы только что обнаружили, что два треугольника на конце ловушки решают правильно? У нас есть прямоугольник посередине. Все просто черным, чтобы было понятно. И мы выяснили, что из этого 21 это девять. Это секс, и это секс. Итак, это будет шесть частей. Если мы посмотрим на эту часть трапеции, высота, которую мы уже знаем, равна восьми, поэтому нам просто нужно найти гипотенузу. Таким образом, квадрат плюс B в квадрате или квадрат плюс B в квадрате равняется C в квадрате.Простите. Так что давайте просто сделаем это в моей голове очень быстро, потому что эти числа легко возвести в квадрат. Итак, 36 плюс 64 равно C в квадрате, и у меня уже кружится голова, потому что это очень легко решить. 36 плюс 64 равняются 100 из 100. Он равен C, который, как мы знаем, равен 10. Итак, 10 равняется C. 10 10. Сложите все. У нас 10 20 29 плюс 21 равно 50, так что я просто бросаю, чтобы было легче, скажем, 10 плюс 10 плюс 21 плюс девять равно 50. Так что это было действительно весело. Проблема. Это весело, потому что формулы просты в понятиях просты, но их применение.Вы должны обладать некоторой находчивостью, чтобы знать, где было бы полезно рисовать треугольники и что вы можете обнаружить и извлечь из каждой новой вещи. Это выходит из уравнения, верно? Простите. Требует немного нестандартной головоломки, решения проблем и понимания геометрии. Так что это забавное маленькое упражнение, на мой взгляд,

Трапеции и ее свойства

Овладейте семью столпами успеха в школе

Повысьте успеваемость и снизьте уровень стресса

Средняя часть трапеции .(также называемый средним) создается путем проведения линии от середины одной ноги до середины другой ноги.

Длину средней части можно рассчитать, сложив длину двух оснований и разделив ее на два.

Средняя часть EF = AB + DC / 2

Трапеция может иметь прямой угол

Базовые углы равнобедренной трапеции совпадают, а противоположные углы являются дополнительными.

∠A и ∠B и ∠D и ∠C совпадают

A и ∠C и ∠B и ∠D дополнительные

Углы, образованные сторонами на одной стороне трапеции, смежны углы, и являются дополнительными.(добавить к 180 градусам)

∠A и ∠D и ∠B и ∠C смежные и дополнительные

  • Трапеция — это четырехугольник с ровно одной парой параллельных сторон.
  • Параллельные стороны трапеции образуют основания.
  • Сумма внутренних углов трапеции равна 360 градусам, а углы с каждой стороны трапеции являются дополнительными.
  • Трапеция имеет четыре вершины, также называемые углами.
  • Медиана трапеции — это линия, соединяющая середину двух сторон.
  • Трапеция имеет одну пару параллельных сторон. У параллелограмма две пары параллельных сторон.
  • Кроме того, есть прямые трапеции и равнобедренные трапеции.
  • Равнобедренная трапеция — это трапеция с двумя параллельными сторонами, причем две другие стороны совпадают.
  • Кроме того, диагонали равнобедренного треугольника совпадают.
  • Углы основания равнобедренной трапеции совпадают.
  • У правой трапеции два прямых угла.
  • В Великобритании трапеция называется трапецией

Common Core Standard. 7.G.6

Трапеция — это
четырехугольник.

Трапеция имеет две параллельные
стороны и две непараллельные стороны.

Внутренние углы а
трапеции складываются в 360 градусов, а углы с каждой стороны являются дополнительными.

Формула площади
трапеция равна

Площадь = 1/2 (b1 + b2)
h

h = высота

b = основание

Формула периметра a
трапеция равна

Периметр = b1
+ b2 + s1 + s2

Высота
Трапеция

ч = г *
SinB или h = w * SinA

Диагонали
длина

Вам тоже может понравиться……

Из этого видео вы узнаете ….

Формула для определения периметра трапеции

Пошаговая инструкция для определения периметра

Видео отрабатывает высоту проблема

Какова высота равнобедренной трапеции с основанием 10 и 18 единиц, длиной стороны 4 единицы и углом 50 градусов? (см. рисунок)

Внутренние углы трапеции складываются в 360 градусов.

Углы трапеции

Трапеция, средняя линия и средний сегмент трапеции и треугольника

Четырехугольник с двумя противоположными параллельными сторонами называется трапецией (трапецией) .

Параллельные стороны трапеции называются основаниями (AB и CD), а те, которые не параллельны, называются ножками (AD и BC).
Если ноги равны по длине, трапеция называется равнобедренная .
DE и CF — , высота .

Средняя линия трапеции

Линия, соединяющая середины непараллельных сторон, называется средней линией (или средним сегментом) трапеции.

Линия MN является средней линией ABCD. А сегмент MN — это средний сегмент ABCD.

AM = MD
BN = NC

Средняя линия трапеции параллельна ее сторонам.
В нашем случае — MN || AB || ОКРУГ КОЛУМБИЯ.

Теорема 1:

Если линия, проходящая через середину отрезка трапеции, параллельна ее основаниям,
затем линия проходит через середину другой ноги.

Теорема 2:

Средний отрезок трапеции составляет половину длины двух параллельных сторон.

Другими словами:
$ \ overline {MN} = \ frac {\ overline {AB} + \ overline {DC}} {2} $

Середина треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется срединным сегментом треугольника.

Он параллелен третьей стороне, а его длина вдвое меньше длины третьей стороны.

Теорема : Если отрезок прямой пересекает середину одной стороны треугольника и параллелен другой стороне того же треугольника, то этот отрезок делит третью сторону пополам.

$ \ overline {AM} = \ overline {MC} $ и $ \ overline {BN} = \ overline {NC} $ =>

$ MN || AB $
$ \ overline {MN} = \ frac {\ overline {AB}} {2} $

Применение свойств срединных сегментов

Разделите отрезок на равные отрезки без измерения.

Задание: Разделите данный сегмент $ \ overline {AB} $ на 5 равных сегментов без измерения.

Решение:

Пусть p — произвольный луч с началом A, не лежащий на AB.На п. Рисуем последовательно пять равных отрезков.
$ \ overline {AA_1} = \ overline {A_1A_2} = \ overline {A_2A_3} = \ overline {A_3A_4} = \ overline {A_4A_5} $
Мы соединяем A 5 с B и проводим линии через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B.

Они пересекают AB в точках B 4 , B 3 , B 2 и B 1 соответственно.
Эти точки делят отрезок $ \ overline {AB} $ на пять равных отрезков.

Действительно, из трапеции BB 3 A 3 A 5 мы видим, что $ \ overline {BB_4} = \ overline {B_4B_3} $.
Таким же образом из трапеции B 4 B 2 A 2 A 4 ,
получаем $ \ overline {B_4B_3} = \ overline {B_3B_2} $

При этом от трапеции B 3 B 1 A 1 A 3 ,
$ \ overline {B_3B_2} = \ overline {B_2B_1} $.
Тогда из B 2 AA 2 следует, что $ \ overline {B_2B_1} = \ overline {B_1A} $.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *