Что такое трапеция в геометрии: Трапеция — урок. Геометрия, 8 класс.

Содержание

Трапеция

Сегодня на уроке мы познакомимся с геометрической
фигурой, которую называют трапецией.

Итак, трапецией называется четырёхугольник, у
которого две стороны параллельны, а две другие – нет.

Параллельные стороны трапеции называются основаниями.
 А не параллельные  – боковыми сторонами.

Перпендикуляр, проведённый из любой точки одного из
оснований на другое основание или его продолжение, называется высотой
трапеции
.

Трапеция, у которой есть прямой угол, называется прямоугольной.
Следует отметить, что, так как основания AB
и CD  параллельны, прямая BC

секущая, а сумма односторонних углов равна 180º, то и угол BCD
также равен 90º.

Трапеция, у которой боковые стороны равны,
называется равнобедренной.

Далее мы рассмотрим некоторые свойства и признаки равнобедренной
трапеции.

Теорема. Свойство углов равнобедренной трапеции. Углы
при основании равнобедренной трапеции равны.

Доказательство.

Рассмотрим прямоугольные  и .

, так как  – равнобедр.
трапеция,

.

по катету и
гипотенузе.

Следовательно, .

Теорема доказана.

Теорема. Свойство диагоналей равнобедренной
трапеции.
Диагонали равнобедренной трапеции равны.

Доказательство.

Рассмотрим  и .

, так как  – равнобедр.
трапеция,сторона  – общая,

 как углы при
основании равнобедр. трапеции.

 по первому
признаку.

Следовательно, .

Теорема доказана.

Теорема. Признак равнобедренной трапеции. Если
у трапеции углы при основании равны, то она равнобедренная.

Доказательство.

Рассмотрим прямоугольные  и .

 по условию.

.

по катету и
противолежащемуострому углу.

Следовательно, .

Тогда трапеция  –
равнобедренная.

Теорема доказана.

Теорема. Признак равнобедренной трапеции. Если
у трапеции диагонали равны, то она равнобедренная.

Доказательство.

Рассмотрим прямоугольные  и .

 по условию,.

по катету и гипотенузе.

Следовательно, .

Рассмотрим  и .

 по
условию,сторона  – общая,.

по первому
признаку.

Следовательно, .

Тогда трапеция  –
равнобедренная.

Теорема доказана.

А теперь решим несколько задач.

Задача.  – трапеция, у
которой . . Найдите
градусную меру .

Решение.

Так как , то трапеция  –
равнобедренная.

как углы при
основании равнобедр. трапеции.

,  –
внутр. односторонние при  и секущей , то есть

,

,

,

.

Ответ: .

Задача. В прямоугольной
трапеции  проведена
диагональ . , . Найдите
градусную меру .

Решение.

как накр.
лежащие при и секущей ,то есть .

,следовательно,  –
равнобедренный, тогда .

Для : ,

,

,

.

Ответ: .

Урок по геометрии «Трапеция»(8 класс)

Дата:

Тема урока: Трапеция.

Цели урока:

Образовательная:

  • Ввести понятие трапеции и ее элементов, познакомить учащихся видами трапеций;

  • Рассмотреть некоторые свойства и признаки равнобедренной трапеции;

  • Научить учащихся применять полученные знания в процессе решения задач.

Развивающая:

  • Развитие у детей умения обобщать, логически мыслить, применять в своих рассуждениях аналогию, наблюдение, рационально применять свои знания;

Воспитательная:

  • Воспитание интереса к математике с помощью элементов занимательности, знакомства с историей возникновения понятия «трапеция»

Тип урока: урок изучения нового материала и первичное закрепление знаний.

Оборудование: слайды из презентации к уроку, проектор, карточка-тест.

Содержание урока:

  1. Организационный момент (1 мин)

  2. Актуализация опорных знаний (5-7 минут)

  3. Сообщение цели и темы урока. (2-3 минуты)

  4. Изучение нового материала (15 – 20 минут)

  1. Ввести понятие трапеции, ее оснований и боковых сторон.

  2. Ввести понятия равнобедренной трапеции, прямоугольной трапеции.

  3. Изучение свойств равнобедренной трапеции.

  1. Закрепление изученного материала (решение задач на готовых чертежах)
    (10-12 минут)

  2. Самостоятельная работа в виде теста (3- 4 минуты)

  3. Подведение итогов урока. Рефлексия (2 – 3 минуты)

  4. Домашнее задание (1 минута)

Ход урока:

  1. Организационный момент

Учитель: Здравствуйте, ребята. Сегодня на уроке мы продолжаем изучение одного из важнейших разделов геометрии – изучение четырехугольников.

Эта тема является основой решения множества геометрических задач и базой изучения теоретического материала в дальнейшем.

  1. Актуализация опорных знаний

Попробуем систематизировать все, что мы знаем о четырехугольниках.

Слайд 1

Ребята, посмотрите, пожалуйста, на слайд.

На доске представлена схема изучения геометрии 8 класса, но все понятия потеряли свои места. Ваша задача – восстановить порядок изучения материала.

Вспомогательные вопросы:

— Какие бывают четырехугольники? [Выпуклые и невыпуклые]

— Какой четырехугольник называется выпуклым? [четырехугольник – называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины]

— Что вы можете сказать о сумме углов четырехугольника? [Сумма всех углов равна 360°]

— С каким четырехугольником мы уже познакомились?[Параллелограммом]

— Дайте определение параллелограмма? [Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны]

— Какие свойства параллелограмма мы изучили? [В параллелограмме противоположные стороны и углы равны ]; [Диагонали параллелограмма точкой пересечения делятся пополам]

— Какие признаки мы изучили?

[Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм]

[Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм]

[Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм]

— Для чего необходимо использовать признаки, а для чего применять свойства?

[Свойство — это характерная особенность, присущая только этой геометрической фигуре. Признак — это характерная особенность, по которой ищут в многообразии других фигур именно эту].

Молодцы! Вы хорошо справились с заданием!

  1. Сообщение цели и темы урока.

Слайд 2

На доске вы видите разные виды четырехугольников.

— Как вы думаете, у всех ли четырехугольников противоположные стороны параллельны? (Выслушиваются ответы учеников).

-А может ли существовать четырехугольник, у которого только одна пара сторон параллельна?

— А как такие четырехугольники называются?

Итак, какова тема нашего урока? [Трапеция]

— Запишем тему урока: Трапеция.

Мы уже изучили параллелограмм, вспомнили с вами структуру изучения темы? По аналогии с параллелограммом, скажите, что мы узнаем о трапеции?

[Сегодня на уроке мы познакомиться с еще одним видом четырехугольников – трапецией, узнаем о её видах, свойствах и признаках; научимся применять эти свойства и признаки при решении задач. ]

  1. Изучение нового материала

— Правильно, а сейчас послушаем рассказ подготовленный Самуйленковым Степаном и узнаем, почему этот четырехугольник — носит такое название?

  • Понятие трапеции формировалось в течение длительного периода времени. «Трапеция» в нашем смысле встречается впервые у древнегреческого математика Посейдона. Сначала трапецией называли любой четырехугольник, не являющийся параллелограммом . Именно в таком смысле термин «трапеция» использовал Евклид в своих «Началах». Лишь в XVIII в. это слово приобретает современный смысл.

  • «Трапеция» — слово греческого происхождения, означавшее в древности «столик» (по гречески «трапедзион» означает столик, обеденный стол).

— Спасибо, Степа! [Сообщение оценки]

  1. Ввести понятие трапеции, ее оснований и боковых сторон.
    В тетрадях и на доске рисунок и записи

Слайд 3
Ребята, посмотрите на трапецию и дайте определение трапеции самостоятельно. [Выслушиваются ответы учеников].

Проверьте себя, прочитайте определение в учебнике. ( страница 103)

Как называются параллельные стороны? [Основания]

Как называются две другие стороны? [боковые стороны]

— Параллельные стороны не могут быть равными? [ Нет, так как в противном случае мы имели бы параллелограмм]

— Правильно, поэтому одну из них мы назовем большим, вторую – малым основаниями трапеции.

2. Ввести понятия равнобедренной трапеции, прямоугольной трапеции. В тетрадях и на доске рисунки и записи. Слайд 4.

— Какие стороны у трапеции могут быть равными? [Боковые]
В зависимости от длин боковых сторон и их расположения трапеции могут быть различных видов. Рассмотрим виды трапеции.

В 7 классе мы изучали треугольник, у которого две равные стороны. Как он называется? [равнобедренный]

Как называется трапеция, которой боковые стороны равны? [равнобедренная]

Слайд 5.

— Следующий вид трапеции — прямоугольная трапеция.

Дайте определение прямоугольной трапеции самостоятельно.

Подведем итог: Трапеция – это …[ответ учащихся]
Трапеции бывают …[ответ учащихся]

Какая трапеция называется равнобедренной? прямоугольной …[ответ учащихся]

  1. Изучение свойств равнобедренной трапеции.
    — Равнобедренная трапеция обладает основными свойствами. Эти свойства мы выведем, решая задачу.

Рассмотрим задачу с учебника №388(а)

№ 388 (а).

В равнобедренной трапеции углы при основании равны.

1. Дополнительные построения: СЕ||АВ.

2. ABСЕ – параллелограмм (СЕ||АВ, АЕ||ВС) => АВ=СЕ.

3. АВ=СЕ=СD=> СЕD равнобедренный => 1=2.

4. Так как АВ||СЕ, то 3=2 – как соответственные => 3=1.

5. В=180º-3=180º-1=С.

Ч.т.д.

В ходе решения задачи, учитель задает наводящие вопросы:

  1. При решении задач, мы используем свойства и признаки уже изученных фигур. Для этого необходимы дополнительные построения. Подумайте, на какие фигуры можно разбить трапецию? Что для этого надо сделать? [Построить отрезок СЕ, такой что СЕ||АВ.]

  2. Что вы можете сказать о четырехугольнике ABСЕ? [ABСЕ – параллелограмм (СЕ||АВ, АЕ||ВС) => АВ=СЕ.]

  3. Рассмотрим другую фигуру – треугольник СЕD. Какой это треугольник? [Равнобедренный, т.к. АВ=СЕ=СD].
    Какими свойствами обладает равнобедренный треугольник? [В равнобедренном треугольнике углы при основании равны, значит 1=2.]

  4. Скажите, можно ли утверждать что 3 = 2? Как называются эти углы?
    Итак, если 1=2 , а 2=3 значит 3=1

  5. Мы доказали равенство углов при большем основании. Как доказать, что В=С?
    Что вы можете сказать о А и В? [односторонние]. Что мы знаем про односторонние углы? [сумма односторонних углов равна 180]

Слайд 6. № 388 (б) прочитать задачу.

— Доказательство этого свойства, вы проведете дома самостоятельно.

В тетрадях и на доске рисунок и записи:

Слайд 7.

— Сформулируйте утверждения, обратные свойствам равнобедренной трапеции. Как называются эти обратные свойства? [признаки равнобедренной трапеции]

  1. Закрепление изученного материала (решение задач на готовых чертежах)

Сейчас я предлагаю вам узнать имя ученого, спрятанного за сеткой задач. При правильном ответе сектор открывается и появляется часть изображения.

Много интересного рассказывают про этого учёного. Вот, например, один случай. Учёный, наблюдая звёзды, упал в колодец, а стоявшая рядом женщина посмеялась над ним, сказав: «Хочет знать, что делается на небе, а что у него под ногами, не видит»

Этот учёный сформулировал следующие теоремы: а) Вертикальные углы равны; б) В равнобедренном треугольнике углы при основании равны; в)Если на одной стороне угла отложить равные отрезки, и провести через них параллельные прямые, то и на другой стороне угла отложатся равные отрезки.

Слайд 8

Ответы:

( слева – направо, 1 ряд – 2 ряд )
1) Е = N = 80;M = 100.

2) F = 90;M=115

3) К =F = 55;M=R= 125;

4) B = 110;M=130

5) D = 55;C=125;F = 105

6) C = 120;A=60;B = 120

При отсутствии времени количество задач сократить, решив их на следущем уроке.

  1. Самостоятельная работа в виде теста

Слайд 9.

ТЕСТ

Определить вид четырехугольника если он имеет:

Трапеция

Паралле-лограмм

Равнобед-ренная

Прямо-угольная

Разносто-ронняя

два прямых угла и все стороны разные

+

два разных острых угла и все разные стороны

+

два одинаковых тупых угла и две одинаковые боковые стороны

+

противоположные стороны равны и углы равны

+

  1. Подведение итогов урока. Рефлексия.
    Ребята, что нового вы узнали на уроке?
    Что было особенно интересно?
    На что еще необходимо обратить внимание?

  2. Домашнее задание
    П. 44, записи в тетрадях, № 388(б), № 390.

Придумать и решить задачу на использование свойства или признака трапеции.

Трапеция

Трапеция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого только одна пара противолежащих сторон параллельна.



Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.



Средняя линия трапеции — отрезок, соединяющий середины боковых сторон трапеции.


Элементы трапеции

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.


Виды трапеций

  • Трапеция, у которой боковые стороны равны, называется равнобедренной.
  • Трапеция, у которой один из углов «прямой», называется прямоугольной.



Основные свойства трапеции

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

\[ AB + CD = BC + AD \]


Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

\[ AK = KB, AM = MC, BN = ND, CL = LD \]


Средняя линия трапеции параллельна основаниям и равна их полусумме:

\[ m = \dfrac{a + b}{2} \]


Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой. 2 \]



Формулы длин сторон трапеции

Формула длины оснований трапеции через среднюю линию и другую основу:

\[ a = 2m — b , b = 2m — a \]


Формулы длины основ трапеции через высоту и углы при нижнем основании:

\[ a = b + h · (ctg \alpha + ctg \beta) , b = a — h · (ctg \alpha + ctg \beta)\]


Формулы длины основ трапеции через боковые стороны и углы при нижнем основании:

\[ a = b + c·cos \alpha + d·cos \beta, b = a — c·cos \alpha — d·cos \beta \]


Формулы боковых сторон трапеции через высоту и углы при нижнем основании:

\[ с = \dfrac{h}{sin \alpha } , d = \dfrac{h}{sin \beta } \]



Формулы длины средних линий трапеции

Формула определения длины средней линии через длины оснований:

\[ m = \dfrac{a + b}{2} \]


Формула определения длины средней линии через площадь и высоту:

\[ m = \dfrac{S}{h} \]



Формулы длины высоты трапеции

Формула высоты трапеции через сторону и прилегающий угол при основании:

\[ h = c·sin α = d·sin β \]


Формула высоты трапеции через диагонали и углы между ними:

\[ h = sin γ \cdot \dfrac{d_1\cdot d_2}{a + b} = sin δ \cdot \dfrac{d_1\cdot d_2}{a + b} \]


Формула высоты трапеции через диагонали, углы между ними и среднюю линию:

\[ h = sin γ \cdot \dfrac{d_1 \cdot d_2}{2m 2m} = sin δ · \dfrac{d_1}{d_2} \]


Формула высоты трапеции через площадь и длины оснований:

\[ h = \dfrac{2S}{a + b} \]


Формула высоты трапеции через площадь и длину средней линии:

\[ h = \dfrac{2S}{m} \]



Формулы длин диагоналей трапеции

Формулы длин диагоналей трапеции по теореме косинусов:

\[ d_1 = \sqrt{a^2 + d^2 — 2ad·cos β} \]

\[ d_2 = \sqrt{a^2 + c^2 — 2ac·cos β} \]


Формулы длин диагоналей трапеции через четыре стороны:

\[ d_1 = \sqrt{d^2 + ab — \dfrac{a(d^2 — c^2)}{a — b} } \]

\[ d_2 = \sqrt{c^2 + ab — \dfrac{ a(c^2 — d^2) }{a — b} } \]


Формулы длин диагоналей трапеции через высоту:

\[ d_1 = \sqrt{h^2 + (a — h · ctg β)^2} = \sqrt { h^2 + (b + h · ctg α)^2} \]

\[ d_2 = \sqrt{h^2 + (a — h · ctg α)^2} = \sqrt{h^2 + (b + h · ctg β)^2} \]


Формулы длин диагоналей трапеции через сумму квадратов диагоналей:

\[ d_1 = \sqrt{c^2 + d^2 + 2ab — d_2^2} \]

\[ d_2 = \sqrt{c^2 + d^2 + 2ab — d_1^2} \]



Формулы площади трапеции

Формула площади трапеции через основания и высоту:

\[ S = \dfrac{ (a + b) · h }{2} \]


Формула площади трапеции через среднюю линию и высоту:

\[ S = m · h \]


Формула площади трапеции через диагонали и угол между ними:

\[ S = \dfrac{d_1d_2}{2} · sin γ = \dfrac{d_1d_2}{2} · sin δ \]


Формула площади трапеции через четыре стороны:

\[ S = \dfrac{a + b}{2}\sqrt{c^2 — \left\lgroup\dfrac{(a — b)^2 + c^2 — d^2)}{2\cdot (a — b)} \right\rgroup ^2 } \]


Формула Герона для площади трапеции

\[ S = \frac{a + b}{\left|a-b\right| } \sqrt{(p — a)(p — b)(p — a — c)(p — a — d)} \]

где \( p = \dfrac{a + b + c + d}{2} \) — полупериметр трапеции.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!