Как найти площадь трапеции если известны все стороны: Все формулы площади трапеции. Найти онлайн

Содержание

Площадь трапеции по сторонам | Треугольники

Как найти площадь трапеции по 4 сторонам?

Чтобы найти площадь трапеции, нужно знать её основания и высоту. Основания известны, следовательно, задача сводится к нахождению высоты трапеции.

I способ.

Из вершины тупого угла провести прямую, параллельную боковой стороне.

Найти площадь полученного треугольника по формуле Герона. Зная площадь, найти высоту треугольника, которая является также высотой трапеции.

Задача 1.

Найти площадь трапеции, основания которой равны 11 см и 28 см, а боковые стороны — 25 см и 26 см.

Дано: ABCD — трапеция,

AD∥BC, AB=25 см, BC=11 см,

CD=26 см, AD=28 см

Найти:

   

Решение:

1) Проведем через вершину C прямую CL,  CL∥AB.

Четырехугольник ABCL — параллелограмм (по определению, так как BC∥AL — по условию, CL∥AB — по построению).

По свойству параллелограмма, AL=BC=11 см, CL=AB=25 см. Следовательно, LD=AD-AL=28-11=17 см.

2) Рассмотрим треугольник CDL. Его площадь найдём по формуле Герона

   

   

   

   

   

С другой стороны, 

   

   

3) По формуле

   

найдём площадь трапеции ABCD:

   

   

Ответ: 468 см².

II способ.

Провести из тупых углов трапеции две высоты.

В результате получим прямоугольник и два прямоугольных треугольника.

Один из катетов этих треугольников — высота трапеции. Её можно выразить через другие стороны в каждом из треугольников, затем приравнять полученные равенства.

Задача 2.

Найти площадь трапеции, основания которой равны 10см  и 14 см, а боковые стороны — 13 см и 14 см.

рисунок 1

Дано:ABCD — трапеция,

AD∥BC, AB=13 см, BC=10 см,

CD=15 см, AD=14 см

Найти:

   

Решение:

Проведём высоты трапеции BK и CF.

Четырёхугольник BCFK — прямоугольник (так как у него все углы прямые). Поэтому, KF=BC=10 см.

Пусть FD=x см, тогда AK=AD-KF-FD=14-10-x=4-x см.

Рассмотрим треугольник CDF — прямоугольный. По теореме Пифагора

   

   

Аналогично, из треугольника ABK

   

   

Приравниваем правые части:

   

   

   

   

   

   

   

Ответ: 144 см².

рисунок 2

Традиционно трапецию изображают именно в таком виде, как на рисунке 1 — с двумя тупыми углами при меньшем основании.

Но в трапеции также могут быть тупыми противоположные углы — как на рисунке 2.

 

 

Для  трапеции с противоположными тупыми углами верны все рассуждения, приведенные выше, за одним исключением —  в этом случае BC=AF=AK+AF.

В разных вариантах трапеции отрезки FD и AK имеют разную длину, но величина высоты, а значит, и площади, одинакова.

формулы на все случаи жизни

(S) трапеции, начните вычисление высоты (h) с нахождения полусуммы длин параллельных сторон: (a+b)/2. Затем на полученное значение разделите площадь — результат и будет искомой величиной: h = S/((a+b)/2) = 2*S/(a+b).

Зная длину средней линии (m) и площадь (S) можно упростить формулу из предыдущего шага. По определению средняя линия трапеции равна полусумме ее оснований, поэтому для вычисления высоты (h) фигуры просто разделите площадь на длину средней линии: h = S/m.

Можно определить высоту (h) такого и в том случае, если даны только длина одной из боковых сторон (с) и угол (α), образуемый ей и длинным основанием. В этом случае следует рассмотреть , образуемый этой стороной, высотой и коротким отрезком основания, который отсекает опущенная на него высота. Этот треугольник будет прямоугольным, известная сторона будет в нем гипотенузой, а высота — катетом. Отношение длин и гипотенузы равно противолежащего катету угла, поэтому для вычисления высоты трапеции умножьте известную длину стороны на синус известного угла: h = с*sin(α).

Такой же треугольник стоит рассмотреть и если даны длина боковой стороны (с) и величина угла (β) между ней и другим (коротким) основанием. В этом случае величина угла между боковой стороной (гипотенузой) и высотой (катетом) будет на 90° меньше известного из условий угла: β-90°. Так как отношение длин катета и гипотенузы равно косинусу угла между ними, то высоту трапеции вычислите умножением косинуса уменьшенного на 90° угла на длину боковой стороны: h = с*cos(β-90°).

Если вписана окружность известного радиуса (r), вычисления высоты (h) будет очень проста и не потребует никаких других параметров. Такая окружность по определению должна каждого из оснований только одной точкой и эти точки будут лежать на одной линии с центром . Это значит, что расстояние между ними будет равно диаметру (удвоенному радиусу), проведенному перпендикулярно основаниям, то есть совпадающим с высотой трапеции: h=2*r.

Трапецией считается такой четырехугольник, у которого две стороны параллельны, а две другие нет. Высотой трапеции называется отрезок, проведенный перпендикулярно между двумя параллельными прямыми. В зависимости от исходных данных ее можно вычислить по-разному.

Вам понадобится

  • Знание сторон, оснований, средней линии трапеции, а так же, опционально, ее площадь и/или периметр.

Инструкция

Допустим, имеется трапеция с теми же данными, что и на рисунке 1. Проведем 2 высоты, получим , у которого 2 меньшие стороны катетами прямоугольных треугольников. Обозначим меньший катит за x. Он находится

Геометрия – одна из наук, с применением которой на практике человек сталкивается практически ежедневно. Среди многообразия геометрических фигур отдельного внимания заслуживает и трапеция. Она представляет собой выпуклую фигуру с четырьмя сторонами, из которых две параллельны между собой. Последние называются основаниями, а оставшиеся две – боковыми сторонами. Отрезок, перпендикулярный основаниям и определяющий величину промежутка между ними, и будет высотой трапеции. Каким же образом можно вычислить его длину?

Найти высоту произвольной трапеции

Базируясь на исходных данных, определение высоты фигуры возможно несколькими способами.

Известна площадь

Если длина параллельных сторон известна, а также указана площадь фигуры, то для определения искомого перпендикуляра можно воспользоваться следующим соотношением:

S=h*(a+b)/2,
h – искомая величина (высота),
S – площадь фигуры,
a и b – стороны, параллельные друг другу.
Из приведенной формулы следует, что h=2S/(a+b).

Известна величина средней линии

Если среди исходных данных помимо площади трапеции (S) известна, и длина ее линии средины (l), то для вычислений пригодится другая формула. Прежде стоит уточнить, что такое средняя линия для данного вида четырехугольника. Термин определяет часть прямой, соединяющей средины боковых сторон фигуры.

Исходя из свойства трапеции l=(a+b)/2,
l – линия средины,
a, b – стороны-основания четырехугольника.
Поэтому h=2S/(a+b)=S/l.

Известны 4 стороны фигуры

В данном случае поможет теорема Пифагора. Опустив перпендикуляры на большую сторону-основание, воспользуйтесь ею для двух получившихся прямоугольных треугольников. Итоговое выражение будет иметь вид:

h=√c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 ,

c и d – 2 другие стороны.

Углы в основании

При наличии данных об углах при основании, воспользуйтесь тригонометрическими функциями.

h = c* sinα = d*sinβ,

α и β – углы в основании четырехугольника,
c и d – его боковые стороны.

Диагонали фигуры и углы, которые пересекаясь они образуют

Длина диагонали – длина отрезка, соединяющего противоположные вершины фигуры. Обозначим данные величины символами d1 и d2, а углы между ними γ и φ. Тогда:

h = (d1*d2)/(a+b) sin γ = (d1*d2)/(a+b) sinφ,

h = (d1*d2)/2l sin γ = (d1*d2)/2l sinφ,

a и b – стороны-основания фигуры,
d1 и d2 – диагонали трапеции,
γ и φ – углы между диагоналями.

Высота фигуры и радиус окружности, которая в нее вписана

Как следует из определения такого рода окружности, она касается каждого основания в 1 точке, которые являются частью одной прямой. Поэтому расстояние между ними – диаметр – искомая высота фигуры. А так как диаметр – удвоенный радиус, то:

h = 2 * r,
r – радиус окружности, которую вписали в данную трапецию.

Найти высоту равнобедренной трапеции

  • Как и следует из формулировки, отличительной характеристикой равнобедренной трапеции является равенство ее боковых сторон. Поэтому для нахождения высоты фигуры воспользуйтесь формулой для определения данной величины в случае, когда известны стороны трапеции.

Итак, если с = d, то h=√c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 = √c 2 -(a-b) 2 /4,
a, b – стороны-основания четырехугольника,
c = d – его боковые стороны.

  • При наличии величины углов, образованных двумя сторонами (основанием и боковой), высоту трапеции определяет следующее соотношение:

h = c* sinα,
h = с * tgα *cosα = с * tgα * (b – a)/2c = tgα * (b-a)/2,

α – угол в основании фигуры,
a, b (a
c = d – его боковые стороны.

  • Если даны величины диагоналей фигуры, то выражение для нахождения высоты фигуры видоизменится, т. к. d1 = d2:

h = d1 2 /(a+b)*sinγ = d1 2 /(a+b)*sinφ,

h = d1 2 /2*l*sinγ = d1 2 /2*l*sinφ.

Практика прошлогодних ЕГЭ и ГИА показывает, что задачи по геометрии вызывают сложности у многих школьников. Вы легко справитесь с ними, если заучите все нужные формулы и попрактикуетесь в решении задач.

В этой статье вы увидите формулы нахождения площади трапеции, а также примеры задач с решениями. Такие же могут попасться вам в КИМах на аттестационных экзаменах или на олимпиадах. Поэтому отнеситесь к ним внимательно.

Что нужно знать про трапецию?

Для начала вспомним, что трапецией
называется четырехугольник, у которого две противоположные стороны, их еще называют основаниями, параллельны, а две другие – нет.

В трапеции также может быть опущена высота (перпендикуляр к основанию). Проведена средняя линия – это прямая, которая параллельна основаниям и равна половине их суммы. А также диагонали, которые могут пересекаться, образуя острые и тупые углы. Или, в отдельных случаях, под прямым углом. Кроме того, если трапеция равнобедренная, в нее можно вписать окружность. И описать окружность около нее.

Формулы площади трапеции

Для начала рассмотрим стандартные формулы нахождения площади трапеции. Способы вычислить площадь равнобедренной и криволинейной трапеций рассмотрим ниже.

Итак, представьте, что у вас есть трапеция с основаниями a и b, в которой к большему основанию опущена высота h. Вычислить площадь фигуры в таком случае проще простого. Надо всего лишь разделить на два сумму длин оснований и умножить то, что получится, на высоту: S = 1/2(a + b)*h
.

Возьмем другой случай: предположим, в трапеции, кроме высоты, проведена средняя линия m. Нам известна формула нахождения длины средней линии: m = 1/2(a + b). Поэтому с полным правом можем упростить формулу площади трапеции до следующего вида: S = m* h
. Другими словами, чтобы найти площадь трапеции, надо умножить среднюю линию на высоту.

Рассмотрим еще один вариант: в трапеции проведены диагонали d 1 и d 2 , которые пересекаются не под прямым углом α. Чтобы вычислить площадь такой трапеции, вам нужно разделить на два произведение диагоналей и умножить то, что получится, на sin угла между ними: S= 1/2d 1 d 2 *sinα
.

Теперь рассмотрим формулу для нахождения площади трапеции, если о ней неизвестно ничего, кроме длин всех ее сторон: a, b, c и d. Это громоздкая и сложная формула, но вам будет полезно запомнить на всякий случай и ее: S = 1/2(a + b) * √c 2 – ((1/2(b – a)) * ((b – a) 2 + c 2 – d 2)) 2
.

Кстати, приведенные выше примеры верны и для того случая, когда вам потребуется формула площади прямоугольной трапеции. Эта трапеция, боковая сторона которой примыкает к основаниям под прямым углом.

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной. Мы рассмотрим несколько вариантов формулы площади равнобедренной трапеции.

Первый вариант: для случая, когда внутрь равнобедренной трапеции вписана окружность с радиусом r, а боковая сторона и большее основание образуют острый угол α. Окружность может быть вписана в трапецию при условии, что сумма длин ее оснований равна сумме длин боковых сторон.

Площадь равнобедренной трапеции вычисляется так: умножьте квадрат радиуса вписанной окружности на четыре и разделите все это на sinα: S = 4r 2 /sinα
. Еще одна формула площади является частным случаем для того варианта, когда угол между большим основанием и боковой стороной равен 30 0: S = 8r 2
.

Второй вариант: на этот раз возьмем равнобедренную трапецию, в которой вдобавок проведены диагонали d 1 и d 2 , а также высота h. Если диагонали трапеции взаимно перпендикулярны, высота составляет половину суммы оснований: h = 1/2(a + b). Зная это, легко преобразовать уже знакомую вам формулу площади трапеции в такой вид: S = h 2
.

Формула площади криволинейной трапеции

Начнем с того, что разберемся: что такое криволинейная трапеция. Представьте себе ось координат и график непрерывной и неотрицательной функции f, которая не меняет знака в пределах заданного отрезка на оси x. Криволинейную трапецию образуют график функции у = f(x) – вверху, ось х – внизу (отрезок ), а по бокам – прямые, проведенные между точками a и b и графиком функции.

Вычислить площадь такой нестандартной фигуры нельзя приведенными выше способами. Тут нужно применить математический анализ и использовать интеграл. А именно: формулу Ньютона-Лейбница – S = ∫ b a f(x)dx = F(x)│ b a = F(b) – F(a)
. В этой формуле F – первообразная нашей функции на выбранном отрезке . И площадь криволинейной трапеции соответствует приращению первообразной на заданном отрезке.

Примеры задач

Чтобы все эти формулы лучше улеглись в голове, вот вам несколько примеров задач на нахождение площади трапеции. Лучше всего будет, если вы сперва попробуете решить задачи сами, и только потом сверите полученный ответ с готовым решением.

Задача №1:
Дана трапеция. Ее большее основание – 11 см, меньшее – 4см. В трапеции проведены диагонали, одна длиной 12 см, вторая – 9 см.

Решение:
Постройте трапецию АМРС. Проведите прямую РХ через вершину Р так, чтобы она оказалась параллельной диагонали МС и пересекла прямую АС в точке Х. Получится треугольник АРХ.

Мы рассмотрим две полученных в результате этих манипуляций фигуры: треугольник АРХ и параллелограмм СМРХ.

Благодаря параллелограмму мы узнаем, что РХ = МС = 12 см и СХ = МР = 4см. Откуда можем вычислить сторону АХ треугольника АРХ: АХ = АС + СХ = 11 + 4 = 15 см.

Мы также можем доказать, что треугольник АРХ – прямоугольный (для этого примените теорему Пифагора – АХ 2 = АР 2 + РХ 2). И высчитать его площадь: S APX = 1/2(AP * PX) = 1/2(9 * 12) = 54 см 2 .

Дальше вам потребуется доказать, что треугольники АМР и РСХ являются равновеликими. Основанием послужит равенство сторон МР и СХ (уже доказанное выше). А также высоты, которые вы опустите на эти стороны – они равны высоте трапеции АМРС.

Все это позволит вам утверждать, что S AMPC = S APX = 54 см 2 .

Задача №2:
Дана трапеция КРМС. На ее боковых сторонах расположены точки О и Е, при этом ОЕ и КС параллельны. Также известно, что площади трапеций ОРМЕ и ОКСЕ находятся в соотношении 1:5. РМ = а и КС = b. Требуется найти ОЕ.

Решение:
Проведите через точку М прямую, параллельную РК, и точку ее пересечения с ОЕ обозначьте Т. А – точка пересечения прямой, проведенной через точку Е параллельно РК, с основанием КС.

Введем еще одно обозначение – ОЕ = х. А также высоту h 1 для треугольника ТМЕ и высоту h 2 для треугольника АЕС (вы можете самостоятельно доказать подобие этих треугольников).

Будем считать, что b > а. Площади трапеций ОРМЕ и ОКСЕ относятся как 1:5, что дает нам право составить такое уравнение: (х + а) * h 1 = 1/5(b + х) * h 2 . Преобразуем и получим: h 1 / h 2 = 1/5 * ((b + х)/(х + а)).

Раз треугольники ТМЕ и АЕС подобные, имеем h 1 / h 2 = (х – а)/(b – х). Объединим обе записи и получим: (х – а)/(b – х) = 1/5 * ((b + х)/(х + а)) ↔ 5(х – а)(х + а) = (b + х)(b – х) ↔ 5(х 2 – а 2) = (b 2 – х 2) ↔ 6х 2 = b 2 + 5а 2 ↔ х = √(5а 2 + b 2)/6.

Таким образом, ОЕ = х = √(5а 2 + b 2)/6.

Заключение

Геометрия не самая легкая из наук, но вы наверняка сможете справиться с экзаменационными заданиями. Достаточно проявить немного усидчивости при подготовке. И, конечно, запомнить все нужные формулы.

Мы постарались собрать в одном месте все формулы вычисления площади трапеции, чтобы вы могли воспользоваться ими, когда будете готовиться к экзаменам и повторять материал.

Обязательно расскажите про эту статью одноклассникам и друзьям в социальных сетях. Пускай хороших оценок за ЕГЭ и ГИА будет больше!

сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Существует множество способов найти площадь трапеции. Обычно репетитор по математике владеет несколькими приемами ее вычисления, остановимся на них подробнее:
1) , где AD и BC основания, а BH-высота трапеции. Доказательство: проведем диагональ BD и выразим площади треугольников ABD и CDB через полупроизведение их оснований на высоту:

, где DP – внешняя высота в

Сложим почленно эти равенства и учитывая, что высоты BH и DP равны, получим:

Вынесем за скобку

Что и требовалось доказать.

Следствие из формулы площади трапеции:

Так как полусумма оснований равна MN — средней линии трапеции, то

2) Применение общей формулы площади четырехугольника
.
Площадь четырехугольника равна половине произведения диагоналей, умноженной на синус угла между ними
Для доказательства достаточно разбить трапецию на 4 треугольника, выразить площадь каждого через «половину произведения диагоналей на синус угла между ними» (в качестве угла берется , сложить получившиеся выражения, вынести за скобку и раскладываю эту скобку на множители методом группировки получить ее равенство выражению . Отсюда

3) Метод сдвига диагонали

Это мое название. В школьных учебниках репетитор по математике не встретит такого заголовка. Описание приема можно найти только в дополнительных учебных пособиях в качестве примера решения какой-нибудь задачи. Отмечу, что большинство интересных и полезных фактов планиметрии репетиторы по математике открывают ученикам в процессе выполнения практической работы. Это крайне неоптимально, ибо школьнику нужно выделять их в отдельные теоремы и называть «громкими именами». Одно из таких – «сдвиг диагонали». О чем идет речь? Проведем через вершину B прямую параллельную к АС до пересечения с нижним основанием в точке E. В таком случае четырехугольник EBCA будет параллелограммом (по определению) и поэтому BC=EA и EB=AC. Нам сейчас важно первое равенство. Имеем:

Заметим, что треугольник BED, площадь которого равна площади трапеции, имеет еще несколько замечательных свойств:
1) Его площадь равна площади трапеции
2) Его равнобедренность происходит одновременно с равнобедренность самой трапеции
3) Верхний его угол при вершине B равен углу между диагоналями трапеции (что очень часто используется в задачах)
4) Его медиана BK равна расстоянию QS между серединами оснований трапеции. С применением этого свойства я недавно столкнулся при подготовке ученика на мехмат МГУ по учебнику Ткачука, вариант 1973 года (задача приводится внизу страницы).

Спецприемы репетитора по математике.

Иногда я предлагаю задачи на весьма хитрый путь нахождении я площади трапеции. Я отношу его к спецприемам ибо на практике репетитор их использует крайне редко. Если вам нужна подготовка к ЕГЭ по математике только в части B, можно про них и не читать. Для остальных рассказываю дальше. Оказывается площадь трапеции в два раза больше площади треугольника с вершинами в концах одной боковой стороны и серединой другой, то есть треугольника ABS на рисунке:
Доказательство: проведем высоты SM и SN в треугольниках BCS и ADS и выразим сумму площадей этих треугольников:

Так как точка S – середина CD, то (докажите это сами).Найдем cумму площадей треугольников:

Так как эта сумма оказалась равной половине площади трапеции, то — вторая ее половина. Ч.т.д.

В копилку спецприемов репетитора я бы отнес форму вычисления площади равнобедренной трапеции по ее сторонам: где p – полупериметр трапеции. Доказательство я приводить не буду. Иначе ваш репетитор по математике останется без работы:). Приходите на занятия!

Задачи на площадь трапеции:

Замечание репетитора по математике
: Нижеприведенный список не является методическим сопровождением к теме, это только небольшая подборка интересных задач на вышерассмотренные приемы.

1) Нижнее основание равнобедренной трапеции равно 13, а верхнее равно 5. Найдите площадь трапеции, если ее диагональ перпендикулярна боковой стороне.
2) Найдите площадь трапеции, если ее основания равны 2см и 5см, а боковые стороны 2см и 3см.
3) В равнобокой трапеции большее основание равно 11, боковая сторона равна 5, а диагональ равна Найти площадь трапеции.
4) Диагональ равнобокой трапеции равна 5, а средняя линия равна 4. Найти площадь.
5) В равнобедренной трапеции основания равны 12 и 20, а диагонали взаимно перпендикулярны. Вычислить площадь трапеции
6) Диагональ равнобокой трапеции составляет с ее нижним основанием угол . Найти площадь трапеции, если ее высота равна 6см.
7) Площадь трапеции равна 20, а одна из ее боковых сторон равна 4 см. Найдите расстояние до нее от середины противоположной боковой стороны.
8) Диагональ равнобокой трапеции делит ее на треугольники с площадями 6 и 14. Найти высоту, если боковая сторона равна 4.
9) В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции (Мехмат МГУ, 1970г).

Я выбирал не самые сложные задачи (не стоит пугаться мехмата!) с расчетом на возможность их самостоятельного решения. Решайте на здоровье! Если вам нужна подготовка к ЕГЭ по математике, то без участия в этом процессе формулы площади трапеции могут возникнуть серьезные проблемы даже с задачей B6 и тем более с C4. Не запускайте тему и в случае каких-либо затруднений обращайтесь за помощью. Репетитор по математике всегда рад вам помочь.

Колпаков А.Н.
Репетитор по математике в Москве
, подготовка к ЕГЭ в Строгино
.

Трапецией называется такой четырехугольник, две стороны у которого параллельны (это основания трапеции, обозначенные на рисунке a и b), а другие две — нет (на рисунке АД и CB). Высота трапеции — это отрезок h, проведенный перпендикулярно к основаниям.

Как найти высоту трапеции при известных величинах площади трапеции и длин оснований?

Для вычисления площади S трапеции ABCD, воспользуемся формулой:

S = ((a+b) × h)/2.

Здесь отрезки a и b — это основания трапеции, h — это высота трапеции.

Преобразуя эту формулу, можем записать:

Используя эту формулу, получим значение h, если известны величина площади S и величины длин оснований a и b.

Пример

Если известно, что площадь трапеции S равна 50 см², длина основания a составляет 4 см, длина основания b составляет 6 см, то, чтобы найти высоту h, используем формулу:

Подставляем в формулу известные величины.

h = (2 × 50)/(4+6) = 100/10 = 10 см

Ответ: высота трапеции составляет 10 см.

Как находить высоту трапеции, если даны величины площади трапеции и длина средней линии?

Воспользуемся формулой вычисления площади трапеции:

Здесь m — средняя линия, h — высота трапеции.

Если возникает вопрос, как найти высоту трапеции, формула:

h = S/m, будет ответом.

Таким образом, можем найти величину высоты трапеции h, имея известные величины площади S и отрезка средней линии m.

Пример

Известна длина средней линии трапеции m, которая составляет 20 см, и площадь S, которая равна 200 см². Найдем значение величины высоты трапеции h.

Подставив значения S и m, получим:

h = 200/20 = 10 см

Ответ: высота трапеции составляет 10 см

Как найти высоту прямоугольной трапеции?

Если трапеция — это четырехугольник, с двумя параллельными сторонами (основаниями) трапеции. То диагональ — это отрезок, который соединяющий две противоположные вершины углов трапеции (отрезок АС на рисунке). Если трапеция прямоугольная, с помощью диагонали, найдем величину высоты трапеции h.

Прямоугольной трапецией называется такая трапеция, где одна из боковых сторон перпендикулярна основаниям. В этом случае ее длина (АД) совпадает с высотой h.

Итак, рассмотрим прямоугольную трапецию ABCD, где AD — это высота, DC — это основание, AC — это диагональ. Воспользуемся теоремой Пифагора. Квадрат гипотенузы AC прямоугольного треугольника ADC равен сумме квадратов его катетов AB и BC.

Тогда можно записать:

AC² = AD² + DC².

AD — это катет треугольника, боковая сторона трапеции и, в то же время, ее высота. Ведь отрезок АД перпендикулярен основаниям. Его длина составит:

AD = √(AC² — DC²)

Итак, имеем формулу для вычисления высоты трапеции h = AD

Пример

Если длина основания прямоугольной трапеции(DC) равна 14 см, а диагональ (AC) составляет 15 см, для получения значения высоты(AD -боковой стороны) воспользуемся теоремой Пифагора.

Пусть х — это неизвестный катет прямоугольного треугольника(AD), тогда

AC² = AD² + DC² можно записать

15² = 14² + х²,

х = √(15²-14²) = √(225-196) = √29 см

Ответ: высота прямоугольной трапеции (АВ) составит √29 см, что приблизительно составит, 5. 385 см

Как найти высоту равнобедренной трапеции?

Равнобедренной трапецией, называют трапецию, у которой длины боковых сторон равны между собой. Прямая, проведенная через середины оснований такой трапеции будет осью симметрии. Частным случаем является трапеция, диагонали которой перпендикулярны друг другу, тогда высота h, будет равна полусумме оснований.

Рассмотрим случай, если диагонали не перпендикулярны друг другу. В равнобочной (равнобедренной) трапеции равны углы при основаниях и длины диагоналей равны. Также известно, что все вершины равнобокой трапеции касаются линии окружности, проведенной вокруг этой трапеции.

Рассмотрим рисунок. ABCD- равнобедренная трапеция. Известно, что основания трапеции параллельны, значит, BC = b параллельно AD = a, сторона AB = CD = c, значит, углы при основаниях соответственно равны, можно записать угол BAQ = CDS = α, и угол ABC = BCD = β. Таким образом, делаем вывод о равенстве треугольника ABQ треугольнику SCD, значит, отрезок

AQ = SD = (AD — BC)/2 = (a — b)/2.

Имея по условию задачи величины оснований a и b, и длину боковой стороны с, найдем высоту трапеции h, равную отрезку BQ.

Рассмотрим прямоугольный треугольник ABQ. ВО — высота трапеции, перпендикулярна основанию AD, значит и отрезку AQ. Сторону AQ треугольника ABQ, найдем, воспользовавшись выведенной нами ранее формулой:

Имея значения двух катетов прямоугольного треугольника, найдем гипотенузу BQ= h. Используем теорему Пифагора.

AB²= AQ² + BQ²

Подставим данные задачи:

c² = AQ² + h².

Получим формулу для нахождения высоты равнобедренной трапеции:

h = √(c²-AQ²).

Пример

Дана равнобедренная трапеция ABCD, где основание AD = a = 10см, основание BC = b = 4см, а боковая сторона AB = c = 12см. При таких условиях, рассмотрим на примере, как найти трапеции высоту, равнобедренной трапеции АВСД.

Найдем сторону AQ треугольника ABQ, подставив известные данные:

AQ = (a — b)/2 = (10-4)/2=3см.

Теперь подставим значения сторон треугольника в формулу теоремы Пифагора.

h = √(c²- AQ²) = √(12²- 3²) = √135 = 11.6см.

Ответ. Высота h равнобедренной трапеции ABCD составляет 11.6 см.

Площадь трапеции

Теория вопроса

 

Напомним, что трапеция – это фигура, у которой две стороны параллельны, а две другие не параллельны.     

    

Трапеция – одна из самых «загадочных» фигур школьной планиметрии. Она обладает некоторыми признаками параллелограмма, но сильно отличается от него разнообразием форм. Различают трапеции прямоугольные, равнобедренные, общего вида. Одно это разнообразие форм уже подозрительно. 

 

На практике форма трапеции встречается более часто, чем прямоугольники, квадраты или параллелограммы. Поэтому нахождение площади для трапеции – более актуальная задача, чем для других фигур.       

 

Существует несколько формул нахождения площади трапеции. Каждая из них подходит для решения соответствующего круга задач.

 

Вот основные формулы:

  1. Площадь трапеции через её основания и высоту:
  1. Площадь трапеции через ее высоту и среднюю линию:
  1. Площадь трапеции через ее диагонали и угол между ними:

 

Давайте разберем задачу, иллюстрирующую применение одной из этих формул:

 

Задача

Основания трапеции общего вида равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.

 

Решение

 

Изобразим трапецию общего вида и введём обозначения, как показано на рисунке ниже.

 

 

 

По условию задачи, один из углов трапеции равен 150°. Этим углом может быть угол ADC. По свойству трапеции, также как и параллелограмма, сумма углов, прилежащих к боковой стороне, равна  180°. Отсюда несложно вычислить, что второй угол, DAН, прилежащий к этой боковой стороне, будет равен 30°.

 

Отрезком DH на рисунке является высота трапеции. Найдем эту высоту из прямоугольного треугольника AHD, где DH является противолежащим катетом, AD является гипотенузой:

 

 

Воспользуемся формулой (1) площади трапеции через ее основания и высоту. По этой формуле площадь трапеции равна произведению полусуммы оснований на ее высоту:

 

 

 

Ответ: 42

 

Итак, зная длины двух оснований трапеции и ее высоту, вычислить ее площадь достаточно просто. Сложности могут быть, если нам не известны один из требуемых элементов, например, высота трапеции. Но здесь на помощь приходят знания свойств трапеций и соотношений в прямоугольном треугольнике.

 

Автор — Андрей Найденов

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!


Запишитесь на бесплатное тестирование знаний!

Все варианты того, как найти площадь трапеции :: SYL.ru

Многоликая трапеция… Она может быть произвольной, равнобедренной или прямоугольной. И в каждом случае нужно знать, как найти площадь трапеции. Конечно, проще всего запомнить основные формулы. Но иногда проще воспользоваться той, которая выведена с учетом всех особенностей конкретной геометрической фигуры.

Несколько слов о трапеции и ее элементах

Любой четырехугольник, у которого две стороны параллельны, можно назвать трапецией. В общем случае они не равны и называются основаниями. Большее из них — нижнее, а другое — верхнее.

Две другие стороны оказываются боковыми. У произвольной трапеции они имеют различную длину. Если же они равны, то фигура становится равнобедренной.

Если вдруг угол между любой боковой стороной и основанием окажется равным 90 градусам, то трапеция является прямоугольной.

Все эти особенности могут помочь в решении задачи о том, как найти площадь трапеции.

Среди элементов фигуры, которые могут оказаться незаменимыми в решении задач, можно выделить такие:

  • высота, то есть отрезок, перпендикулярный обоим основаниям;
  • средняя линия, которая имеет своими концами середины боковых сторон.

По какой формуле вычислить площадь, если известны основания и высота?

Это выражение дается основным, потому что чаще всего можно узнать эти величины, даже когда они не даны явно. Итак, чтобы понять, как найти площадь трапеции, потребуется сложить оба основания и разделить их на два. Получившееся значение потом еще умножить на значение высоты.

Если обозначить основания буквами а1 и а2, высоту — н, то формула для площади будет выглядеть так:

S = ((а1 + а2)/2)*н.

Формула, по которой вычисляется площадь, если даны ее высота и средняя линия

Если посмотреть внимательно на предыдущую формулу, то легко заметить, что в ней явно присутствует значение средней линии. А именно, сумма оснований, деленная на два. Пусть средняя линия будет обозначена буквой l, тогда формула для площади станет такой:

S = l * н.

Возможность найти площадь по диагоналям

Этот способ поможет, если известен угол, образованный ими. Предположим, что диагонали обозначены буквами д1 и д2, а углы между ними — α и β. Тогда формула того, как найти площадь трапеции, будет записана следующим образом:

S = ((д1 * д2 )/2) * sin α.

В этом выражении можно легко заменить α на β. Результат не изменится.

Как узнать площадь, если известны все стороны фигуры?

Бывают и такие ситуации, когда в этой фигуре известны именно стороны. Эта формула получается громоздкой и ее сложно запомнить. Но возможно. Пусть боковые стороны имеют обозначение: в1 и в2, основание а1 больше, чем а2. Тогда формула площади примет такой вид:

S = ((а1 + а2) / 2) * √ {в12 — [(а1 — а2)2 + в1 2 — в2 2) / (2 * (а1 — а2))]2}.

Способы вычисления площади равнобедренной трапеции

Первый связан с тем, что в нее можно вписать окружность. И, зная ее радиус (он обозначается буквой r), а также угол при основании — γ, можно воспользоваться такой формулой:

S = (4 * r2) / sin γ.

Последняя общая формула, которая основана на знании всех сторон фигуры, существенно упростится за счет того, что боковые стороны имеют одинаковое значение:

S = ((а1 + а2) / 2) * √ {в 2 — [(а1 — а2)2 / (2 * (а1 — а2))]2}.

Методы вычисления площади прямоугольной трапеции

Понятно, что подойдет любой из перечисленных для произвольной фигуры. Но иногда полезно знать об одной особенности такой трапеции. Она заключается в том, что разность квадратов длин диагоналей равна разности, составленной из квадратов оснований.

Часто формулы для трапеции забываются, в то время как выражения для площадей прямоугольника и треугольника помнятся. Тогда можно применить простой способ. Разделить трапецию на две фигуры, если она прямоугольная, или три. Одна точно будет прямоугольником, а вторая, или две оставшиеся, треугольниками. После вычисления площадей этих фигур останется их только сложить.

Это достаточно простой способ того, как найти площадь прямоугольной трапеции.

Как быть, если известны координаты вершин трапеции?

В этом случае потребуется воспользоваться выражением, которое позволяет определить расстояние между точками. Его можно применить три раза: для того, чтобы узнать оба основания и одну высоту. А потом просто применить первую формулу, которая описана немного выше.

Для иллюстрации такого метода можно привести такой пример. Даны вершины с координатами А(5; 7), В(8; 7), С(10; 1), Д(1; 1). Нужно узнать площадь фигуры.

До того как найти площадь трапеции, по координатам нужно вычислить длины оснований. Потребуется такая формула:

длина отрезка = √{(разность первых координат точек)2 + (разность вторых координат точек)2}.

Верхнее основание обозначено АВ, значит, его длина будет равна √{(8-5)2 + (7-7)2} = √9 = 3. Нижнее — СД = √ {(10-1)2 + (1-1)2} = √81 = 9.

Теперь нужно провести высоту из вершины на основание. Пусть ее начало будет в точке А. Конец отрезка окажется на нижнем основании в точке с координатами (5; 1), пусть это будет точка Н. Длина отрезка АН получится равной √{(5-5)2 + (7-1)2} = √36 = 6.

Осталось только подставить получавшиеся значения в формулу площади трапеции:

S = ((3 + 9) / 2) * 6 = 36.

Задача решена без единиц измерения, потому что не указан масштаб координатной сетки. Он может быть как миллиметр, так и метр.

Примеры задач

№ 1. Условие. Известен угол между диагоналями произвольной трапеции, он равен 30 градусам. Меньшая диагональ имеет значение 3 дм, а вторая больше ее в 2 раза. Необходимо посчитать площадь трапеции.

Решение. Для начала нужно узнать длину второй диагонали, потому что без этого не удастся сосчитать ответ. Вычислить ее несложно, 3 * 2 = 6 (дм).

Теперь нужно воспользоваться подходящей формулой для площади:

S = ((3 * 6) / 2) * sin 30º = 18/2 * ½ = 4,5 (дм2). Задача решена.

Ответ: площадь трапеции равна 4,5 дм2.

№ 2. Условие. В трапеции АВСД основаниями являются отрезки АД и ВС. Точка Е — середина стороны СД. Из нее проведен перпендикуляр к прямой АВ, конец этого отрезка обозначен буквой Н. Известно, что длины АВ и ЕН равны соответственно 5 и 4 см. Нужно вычислить площадь трапеции.

Решение. Для начала нужно сделать чертеж. Поскольку значение перпендикуляра меньше стороны, к которой он проведен, то трапеция будет немного вытянутой вверх. Так ЕН окажется внутри фигуры.

Чтобы отчетливо увидеть ход решения задачи, потребуется выполнить дополнительное построение. А именно, провести прямую, которая будет параллельна стороне АВ. Точки пересечения этой прямой с АД — Р, а с продолжением ВС — Х. Получившаяся фигура ВХРА — параллелограмм. Причем его площадь равна искомой. Это связано с тем, что треугольники, которые получились при дополнительном построении, равны. Это следует из равенства стороны и двух прилежащих к ней углов, один — вертикальный, другой — накрест лежащий.

Найти площадь параллелограмма можно по формуле, которая содержит произведение стороны и высоты, опущенной на нее.

Таким образом, площадь трапеции равна 5 * 4 = 20 см2.

Ответ: S = 20 см2.

№ 3. Условие. Элементы равнобедренной трапеции имеют такие значения: нижнее основание — 14 см, верхнее — 4 см, острый угол — 45º. Нужно вычислить ее площадь.

Решение. Пусть меньшее основание имеет обозначение ВС. Высота, проведенная из точки В, будет называться ВН. Поскольку угол 45º, то треугольник АВН получится прямоугольный и равнобедренный. Значит, АН=ВН. Причем АН очень легко найти. Она равна половине разности оснований. То есть (14 — 4) / 2 = 10 / 2 = 5 (см).

Основания известны, высота сосчитана. Можно пользоваться первой формулой, которая здесь была рассмотрена для произвольной трапеции.

S = ((14 + 4) / 2) * 5 = 18/2 * 5 = 9 * 5 = 45 (см2).

Ответ: Искомая площадь равна 45 см2.

№ 4. Условие. Имеется произвольная трапеция АВСД. На ее боковых сторонах взяты точки О и Е, так что ОЕ параллельна основанию АД. Площадь трапеции АОЕД в пять раз больше, чем у ОВСЕ. Вычислить значение ОЕ, если известны длины оснований.

Решение. Потребуется провести две параллельные АВ прямые: первую через точку С, ее пересечение с ОЕ — точка Т; вторую через Е и точкой пересечения с АД будет М.

Пусть неизвестная ОЕ=х. Высота меньшей трапеции ОВСЕ — н1, большей АОЕД — н2.

Поскольку площади этих двух трапеций соотносятся как 1 к 5, то можно записать такое равенство:

(х + а2) * н1 = 1/5 (х + а1) * н2

или

н12 = (х + а1) / (5(х + а2)).

Высоты и стороны треугольников пропорциональны по построению. Поэтому можно записать еще одно равенство:

н12 = (х — а2) / (а1 — х).

В двух последних записях в левой части стоят равные величины, значит, можно написать, что (х + а1) / (5(х + а2)) равно (х — а2) / (а1 — х).

Здесь требуется провести ряд преобразований. Сначала перемножить крест накрест. Появятся скобки, которые укажут на разность квадратов, после применения этой формулы получится короткое уравнение.

В нем нужно раскрыть скобки и перенести все слагаемые с неизвестной «х» в левую сторону, а потом извлечь квадратный корень.

Ответ: х = √ {(а1 2 + 5 а2 2 ) / 6}.

Как вычислить площадь трапеции? — Взгляд-Инфо лента новостей

В предыдущих статьях вы уже познакомились с материалами Как найти площадь треугольника и Как найти площадь прямоугольника. Тeпeрь мoжнo приступить к рaссмoтрeнию вoпрoсa Кaк нaйти плoщaдь трaпeции. Дaннaя зaдaчa вoзникaeт oчeнь рeдкo, нo инoгдa oкaзывaeтся необходимой, к примеру, для того чтобы найти площадь комнаты в форме трапеции, которые все чаще применяют при строительстве современных квартир, или в дизайн-проектах по ремонту.

Трапеция — это геометрическая фигура, образованная четырьмя пересекающимися отрезками, две из которых параллельны между собой и называются основаниями трапеции. Два других отрезка называются сторонами трапеции. Кроме того, в дальнейшем нам пригодится ещё одно определение. Это средняя линия трапеции, которая представляет собой отрезок, соединяющий середины боковых сторон и высота трапеции, которая равна расстоянию между основаниями.

Как и у треугольников, у трапеций имеются частные виды в виде равнобедренной трапеции, у которой длина боковых сторон одинакова и прямоугольной трапеции, у которой одна из сторон образует с основаниями прямой угол.

Трапеции обладают некоторыми интересными свойствами:

— У равнобедренных трапеций боковые стороны и углы, которые они образуют с основаниями, равны.

— Средняя линия трапеции равна полусумме оснований и параллельна им.

— Если сумма боковых сторон трапеции равна сумме оснований, в нее можно вписать круг

— Середины диагоналей трапеции и пересечения ее диагоналей находятся на одной прямой.

— Равнобедренную трапецию можно описать окружностью. И наоборот. Если в трапеция вписывается в окружность, значит она равнобедренная.

— Если сумма углов, образованных сторонами трапеции у любого ее основания равна 90, то длина отрезка, соединяющего середины оснований, равна их полуразности.

— Отрезок, проходящий через середины оснований равнобедренной трапеции будет перпендикулярен ее основаниям и представляет собой ось симетрии.

Как найти площадь трапеции.

Площадь трапеции будет равна полусумме ее оснований, умноженной на высоту. В виде формулы это записывается в виде выражения: S = ((a+b)*h)/2 где S-площадь, a,b-основания, c,d-боковые стороны трапеци, h-высота трапеции.

Понять и запомнить эту формулу можно следующим образом. С использованием средней линии можно преобразовать в прямоугольник, длина которого и будет равна полусумме оснований.

Как найти площадь трапеции?

Можно также любую трапецию разложить на более простые фигуры: прямоугольник и один, или два треугольника и если вам так проще, то найти площадь трапеции, как сумму площадей составляющих ее фигур.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m*h, где S-площадь, m-длина средней линии, h-высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.

В этом случае площадь трапеции может быть найдена по формуле:

S = ((a+b)/2)*√c2-((b-a)2+c2-d2/2(b-a))2

где S-площадь, a,b-основания, c,d-боковые стороны трапеции.

Существуют еще несколько способов того, как найти площади трапеции. Но, они также неудобны как и последняя формула, а значит не имеет смысла на них останавливаться. Поэтому, рекомендуем вам пользоваться первой формулой из этой статьи и желаем всегда получать точные результаты.

Нахождение площади трапеции по координатам — «Шпаргалка ЕГЭ»

Найдите площадь трапеции, вершины которой имеют координаты (3;2), (5;2), (9;6), (6;6).

Решение задачи

В данном уроке представлен пример решения задачи В5 на вычисление площади трапеции, которым с успехом можно воспользоваться в качестве подготовки к ЕГЭ по математике.

Для успешного решения задачи необходимо знать, что площадь трапеции определяется как произведение полусуммы оснований на высоту: S=(a+b)*h/2, где и – основания трапеции, а  — высота. Согласно определению, трапеция — это четырехугольник, у которого две стороны параллельны, а две другие — нет. Параллельные стороны называются основаниями, они отмечается для наглядности красным цветом. По рисунку определяются значения оснований заданной трапеции и . В ходе решения также утверждается, что высота трапеции — это отрезок, перпендикулярный ее основаниям. На рисунке выполняется построение высоты зеленым цветом, а затем вычисляется ее длина как разность между крайними отмеченными точками на оси . В результате, подставив все найденные значения в формулу определения площади трапеции, определяется искомый ответ.

Следует напомнить, что Трапеция (от древнегреческого τραπέζιον — «столик» от τράπεζα — «стол») — это четырехугольник, у которого две стороны параллельны.  Две параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон. Средняя линия трапеции параллельна основаниям и равна их полусумме. Диагонали трапеции делят ее на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, имеют одинаковую площадь. Интересно, что в русском языке от слова трапеция происходит слово «трапеза».

Если при решении задач ЕГЭ данного типа у вас возникли сложности с пониманием темы, то всегда можно скачать презентацию или урок с сайта http://uchitelya.com. Сайт Учителя.com содержит более 1000 конспектов, презентаций,  сборников задач, справочников и тренажеров. Все пособия представляют собой отборку наиболее качественных проектов. В них представлены новейшие технологии и методики, уже прошедшие апробацию на учащихся с получением высоких результатов. Каждое пособие можно предварительно оценить путем просмотра в плеере. Желаем вам получать только отличные оценки!

Площадь трапеции онлайн по сторонам. Как найти площадь трапеции

Практика прошлогодних ЕГЭ и ГИА показывает, что задачи по геометрии вызывают сложности у многих школьников. Вы легко справитесь с ними, если заучите все нужные формулы и попрактикуетесь в решении задач.

В этой статье вы увидите формулы нахождения площади трапеции, а также примеры задач с решениями. Такие же могут попасться вам в КИМах на аттестационных экзаменах или на олимпиадах. Поэтому отнеситесь к ним внимательно.

Что нужно знать про трапецию?

Для начала вспомним, что трапецией
называется четырехугольник, у которого две противоположные стороны, их еще называют основаниями, параллельны, а две другие – нет.

В трапеции также может быть опущена высота (перпендикуляр к основанию). Проведена средняя линия – это прямая, которая параллельна основаниям и равна половине их суммы. А также диагонали, которые могут пересекаться, образуя острые и тупые углы. Или, в отдельных случаях, под прямым углом. Кроме того, если трапеция равнобедренная, в нее можно вписать окружность. И описать окружность около нее.

Формулы площади трапеции

Для начала рассмотрим стандартные формулы нахождения площади трапеции. Способы вычислить площадь равнобедренной и криволинейной трапеций рассмотрим ниже.

Итак, представьте, что у вас есть трапеция с основаниями a и b, в которой к большему основанию опущена высота h. Вычислить площадь фигуры в таком случае проще простого. Надо всего лишь разделить на два сумму длин оснований и умножить то, что получится, на высоту: S = 1/2(a + b)*h
.

Возьмем другой случай: предположим, в трапеции, кроме высоты, проведена средняя линия m. Нам известна формула нахождения длины средней линии: m = 1/2(a + b). Поэтому с полным правом можем упростить формулу площади трапеции до следующего вида: S = m* h
. Другими словами, чтобы найти площадь трапеции, надо умножить среднюю линию на высоту.

Рассмотрим еще один вариант: в трапеции проведены диагонали d 1 и d 2 , которые пересекаются не под прямым углом α. Чтобы вычислить площадь такой трапеции, вам нужно разделить на два произведение диагоналей и умножить то, что получится, на sin угла между ними: S= 1/2d 1 d 2 *sinα
.

Теперь рассмотрим формулу для нахождения площади трапеции, если о ней неизвестно ничего, кроме длин всех ее сторон: a, b, c и d. Это громоздкая и сложная формула, но вам будет полезно запомнить на всякий случай и ее: S = 1/2(a + b) * √c 2 – ((1/2(b – a)) * ((b – a) 2 + c 2 – d 2)) 2
.

Кстати, приведенные выше примеры верны и для того случая, когда вам потребуется формула площади прямоугольной трапеции. Эта трапеция, боковая сторона которой примыкает к основаниям под прямым углом.

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной. Мы рассмотрим несколько вариантов формулы площади равнобедренной трапеции.

Первый вариант: для случая, когда внутрь равнобедренной трапеции вписана окружность с радиусом r, а боковая сторона и большее основание образуют острый угол α. Окружность может быть вписана в трапецию при условии, что сумма длин ее оснований равна сумме длин боковых сторон.

Площадь равнобедренной трапеции вычисляется так: умножьте квадрат радиуса вписанной окружности на четыре и разделите все это на sinα: S = 4r 2 /sinα
. Еще одна формула площади является частным случаем для того варианта, когда угол между большим основанием и боковой стороной равен 30 0: S = 8r 2
.

Второй вариант: на этот раз возьмем равнобедренную трапецию, в которой вдобавок проведены диагонали d 1 и d 2 , а также высота h. Если диагонали трапеции взаимно перпендикулярны, высота составляет половину суммы оснований: h = 1/2(a + b). Зная это, легко преобразовать уже знакомую вам формулу площади трапеции в такой вид: S = h 2
.

Формула площади криволинейной трапеции

Начнем с того, что разберемся: что такое криволинейная трапеция. Представьте себе ось координат и график непрерывной и неотрицательной функции f, которая не меняет знака в пределах заданного отрезка на оси x. Криволинейную трапецию образуют график функции у = f(x) – вверху, ось х – внизу (отрезок ), а по бокам – прямые, проведенные между точками a и b и графиком функции.

Вычислить площадь такой нестандартной фигуры нельзя приведенными выше способами. Тут нужно применить математический анализ и использовать интеграл. А именно: формулу Ньютона-Лейбница – S = ∫ b a f(x)dx = F(x)│ b a = F(b) – F(a)
. В этой формуле F – первообразная нашей функции на выбранном отрезке . И площадь криволинейной трапеции соответствует приращению первообразной на заданном отрезке.

Примеры задач

Чтобы все эти формулы лучше улеглись в голове, вот вам несколько примеров задач на нахождение площади трапеции. Лучше всего будет, если вы сперва попробуете решить задачи сами, и только потом сверите полученный ответ с готовым решением.

Задача №1:
Дана трапеция. Ее большее основание – 11 см, меньшее – 4см. В трапеции проведены диагонали, одна длиной 12 см, вторая – 9 см.

Решение:
Постройте трапецию АМРС. Проведите прямую РХ через вершину Р так, чтобы она оказалась параллельной диагонали МС и пересекла прямую АС в точке Х. Получится треугольник АРХ.

Мы рассмотрим две полученных в результате этих манипуляций фигуры: треугольник АРХ и параллелограмм СМРХ.

Благодаря параллелограмму мы узнаем, что РХ = МС = 12 см и СХ = МР = 4см. Откуда можем вычислить сторону АХ треугольника АРХ: АХ = АС + СХ = 11 + 4 = 15 см.

Мы также можем доказать, что треугольник АРХ – прямоугольный (для этого примените теорему Пифагора – АХ 2 = АР 2 + РХ 2). И высчитать его площадь: S APX = 1/2(AP * PX) = 1/2(9 * 12) = 54 см 2 .

Дальше вам потребуется доказать, что треугольники АМР и РСХ являются равновеликими. Основанием послужит равенство сторон МР и СХ (уже доказанное выше). А также высоты, которые вы опустите на эти стороны – они равны высоте трапеции АМРС.

Все это позволит вам утверждать, что S AMPC = S APX = 54 см 2 .

Задача №2:
Дана трапеция КРМС. На ее боковых сторонах расположены точки О и Е, при этом ОЕ и КС параллельны. Также известно, что площади трапеций ОРМЕ и ОКСЕ находятся в соотношении 1:5. РМ = а и КС = b. Требуется найти ОЕ.

Решение:
Проведите через точку М прямую, параллельную РК, и точку ее пересечения с ОЕ обозначьте Т. А – точка пересечения прямой, проведенной через точку Е параллельно РК, с основанием КС.

Введем еще одно обозначение – ОЕ = х. А также высоту h 1 для треугольника ТМЕ и высоту h 2 для треугольника АЕС (вы можете самостоятельно доказать подобие этих треугольников).

Будем считать, что b > а. Площади трапеций ОРМЕ и ОКСЕ относятся как 1:5, что дает нам право составить такое уравнение: (х + а) * h 1 = 1/5(b + х) * h 2 . Преобразуем и получим: h 1 / h 2 = 1/5 * ((b + х)/(х + а)).

Раз треугольники ТМЕ и АЕС подобные, имеем h 1 / h 2 = (х – а)/(b – х). Объединим обе записи и получим: (х – а)/(b – х) = 1/5 * ((b + х)/(х + а)) ↔ 5(х – а)(х + а) = (b + х)(b – х) ↔ 5(х 2 – а 2) = (b 2 – х 2) ↔ 6х 2 = b 2 + 5а 2 ↔ х = √(5а 2 + b 2)/6.

Таким образом, ОЕ = х = √(5а 2 + b 2)/6.

Заключение

Геометрия не самая легкая из наук, но вы наверняка сможете справиться с экзаменационными заданиями. Достаточно проявить немного усидчивости при подготовке. И, конечно, запомнить все нужные формулы.

Мы постарались собрать в одном месте все формулы вычисления площади трапеции, чтобы вы могли воспользоваться ими, когда будете готовиться к экзаменам и повторять материал.

Обязательно расскажите про эту статью одноклассникам и друзьям в социальных сетях. Пускай хороших оценок за ЕГЭ и ГИА будет больше!

сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Трапеция — это особый вид четырехугольника, у которого две противолежащие стороны параллельны друг другу, а две другие — нет. Трапецеидальную форму имеют различные реальные объекты, поэтому вам может понадобиться рассчитать периметр такой геометрической фигуры для решения повседневных или школьных задач.

Геометрия трапеции

Трапеция (от греч. «трапезион» — стол) — это фигура на плоскости, ограниченная четырьмя отрезками, два из которых параллельны, а два — нет. Параллельные отрезки носят название оснований трапеции, а непараллельные — боковых сторон фигуры. Боковые стороны и их углы наклона определяют вид трапеции, которая может быть разносторонней, равнобедренной или прямоугольной. Помимо оснований и боковых сторон, трапеция имеет еще два элемента:

  • высота — расстояние между параллельными основаниями фигуры;
  • средняя линия — отрезок, соединяющий середины боковых сторон.

Данная геометрическая фигура широко распространена в реальной жизни.

Трапеция в реальности

В повседневной жизни трапецеидальную форму принимают многие реальные предметы. Вы легко найдете трапеции в следующих сферах человеческой деятельности:

  • дизайн интерьеров и декор — диваны, столешницы, стены, ковры, подвесные потолки;
  • ландшафтный дизайн — границы газонов и искусственных водоемов, формы декоративных элементов;
  • мода — форма одежды, обуви и аксессуаров;
  • архитектура — окна, стены, основания зданий;
  • производство — различные изделия и детали.

При столь широком использовании трапеций специалистам часто приходится вычислять периметр геометрической фигуры.

Периметр трапеции

Периметр фигуры — это числовая характеристика, которая рассчитывается как сумма длин всех сторон n-угольника. Трапеция — это четырехугольник и в общем случае все его стороны имеют разную длину, поэтому периметр рассчитывается по формуле:

P = a + b + c + d,

где a и c – основания фигуры, b и d – ее боковые стороны.

Несмотря на то, что при вычислении периметра трапеции нам нет нужды узнавать высоту, программный код калькулятора требует ввода этой переменной. Так как высота никак не влияет на вычисления, при использовании нашего онлайн-калькулятора вы можете ввести любое значение высоты, которое больше нуля. Рассмотрим пару примеров.

Примеры из реальной жизни

Платок

Допустим, у вас есть платок в форме трапеции, и вы хотите отделать его бахромой. Вам понадобится узнать периметр платка, чтобы не купить лишнего материала или не ходить в магазин два раза. Пусть ваш равнобедренный платок имеет следующие параметры: a = 120 см, b = 60 см, c = 100 см, d = 60 см. Вбиваем эти данные в онлайн-форму и получаем ответ в виде:

Таким образом, периметр платка составляет 340 см, и именно такой длины должна быть тесьма бахромы для его отделки.

Откосы

К примеру, вы решили сделать откосы для нестандартных металлопластиковых окон, которые имеют трапецеидальную форму. Такие окна широко используются при дизайне зданий, создавая композицию из нескольких створок. Чаще всего такие окна выполняются в виде прямоугольной трапеции. Давайте выясним, сколько материала потребуется для выполнения откосов такого окна. Стандартное окно имеет следующие параметры a = 140 см, b = 20 см, c = 180 см, d = 50 см. Используем эти данные и получим результат в виде

Следовательно, периметр трапециевидного окна составляет 390 см, и именно столько вам понадобится купить пластиковых панелей для формирования откосов.

Заключение

Трапеция — популярная в повседневности фигура, определение параметров которой может понадобиться в самых неожиданных ситуациях. Расчет периметров трапецией необходим многим профессионалам: от инженеров и архитекторов до дизайнеров и механиков. Наш каталог онлайн-калькуляторов позволит вам выполнить расчеты для любых геометрических фигур и тел.

В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция — вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.

Площадь трапеции

Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции — это отрезок, перпендикулярный основаниям. Пусть верхнее основание — a, нижнее основание — b, а высота — h. Тогда вычислить площадь S можно по формуле:

S = ½ * (a+b) * h

т. е. взять полусумму оснований, умноженную на высоту.

Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию — m. Тогда

Решим задачу посложнее: известны длины четырех сторон трапеции — a, b, c, d. Тогда площадь отыщется по формуле:

Если известны длины диагоналей и угол между ними, то площадь ищется так:

S = ½ * d1 * d2 * sin α

где d с индексами 1 и 2 — диагонали. В данной формуле в расчете приводится синус угла.

При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:

S = ½ * (b2 — a2) * (sin α * sin β / sin(α + β))

Площадь равнобедренной трапеции

Равнобедренная трапеция — это частный случай трапеции. Ее отличие в том, что такая трапеция — это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.

Найти площадь равнобедренной трапеции можно несколькими способами.

  • Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной — с, а и b — длины оснований:

  • Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:

S = c * sin α * (a + c * cos α)

где а — верхнее основание, с — боковая сторона.

  • Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:

S = c * sin α * (b – c * cos α)

  • Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:

S = ½ * (b2 – a2) * tg α

  • Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:

S = ½ * d2 * sin α

  • Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.

Пусть боковая сторона — с, средняя линия — m, угол — a, тогда:

S = m * c * sin α

Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет — r.

Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:

S = 4r2 / sin α

Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):

Зная основания и угол, площадь равнобедренной трапеции вычисляется так:

S = a * b / sin α

(эта и последующие формулы верны только для трапеций с вписанной окружностью).

Через основания и радиус окружности площадь ищется так:

Если известны только основания, то площадь считается по формуле:

Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию — m вычисляется так:

Площадь прямоугольной трапеции

Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.

Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.

Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.

  • Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:

S = (a + b) * h / 2

В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:

S = (a + b) * c / 2

  • Другой способ рассчитать площадь — перемножить длину средней линии на высоту:

или на длину боковой перпендикулярной стороны:

  • Следующий способ вычисления — через половину произведения диагоналей и синус угла между ними:

S = ½ * d1 * d2 * sin α

Если диагонали перпендикулярны, то формула упрощается до:

S = ½ * d1 * d2

  • Еще один способ вычисления — через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.

Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:

S = (2r + c) * r

  • Если в трапецию вписана окружность, то площадь вычисляется так же:

где m — длина средней линии.

Площадь криволинейной трапеции

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке , осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.

Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:

Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, — 180 градусам.

Трапецией
называется четырехугольник, у которого только две
стороны параллельны между собой.

Они называются основаниями фигуры, оставшиеся – боковыми сторонами. Частными случаями фигуры считается параллелограмм. Также существует криволинейная трапеция, которая включает в себя график функции. Формулы площади трапеции включают в себя практически все ее элементы, и лучшее решение подбирается в зависимости от заданных величин.
Основные роли в трапеции отводятся высоте и средней линии. Средняя линия
– это линия, соединяющая середины боковых сторон. Высота
трапеции проводится под прямым углом от верхнего угла к основанию.
Площадь трапеции через высоту равняется произведению полусуммы длин оснований, умноженному на высоту:

Если по условиям известна средняя линия, то эта формула значительно упрощается, так как она равна полусумме длин оснований :

Если по условиям даны длины всех сторон, то можно рассмотреть пример расчета площади трапеции через эти данные:

Допустим, дана трапеция с основаниями a
= 3 см, b
= 7 см и боковыми сторонами c
= 5 см, d
= 4 см. найдем площадь фигуры:

Площадь равнобокой трапеции

Отдельным случаем считается равнобокая или, как ее еще называют, равнобедренная трапеция.
Особым случаем является и нахождение площади равнобедренной (равнобокой) трапеции. Формула выводится различными способами – через диагонали, через углы, прилегающие к основанию и радиус вписанной окружности.
Если по условиям задана длина диагоналей и известен угол между ними можно использовать такую формулу:

Помните, что диагонали равнобокой трапеции равны между собой!

То есть, зная одно их оснований, сторону и угол, можно легко рассчитать площадь.

Площадь криволинейной трапеции

Отдельный случай – это криволинейная трапеция
. Она располагается на оси координат и ограничивается графиком непрерывной положительной функции.

Ее основание располагает на оси X и ограничивается двумя точками:
Интегралы помогают вычислить площадь криволинейной трапеции.
Формула прописывается так:

Рассмотрим пример расчета площади криволинейной трапеции. Формула требует определенных знаний для работы с определенными интегралами. Для начала разберем значение определенного интеграла:

Здесь F(a)
– это значение первообразной функции f(x)
в точке a
, F(b)
– значение этой же функции f(x)
в точке b
.

Теперь решим задачу. На рисунке изображена криволинейная трапеция, ограниченная функцией . Функция
Нам необходимо найти площадь выделенной фигуры, которая является криволинейной трапецией, ограниченной сверху графиком , справа прямой x
={-8}, слева прямой x
={-10} и осью OX
снизу.
Площадь этой фигуры мы будем рассчитывать по формуле:

Условиями задачи нам задана функция. По ней мы найдем значения первообразной в каждой из наших точек:

Теперь
Ответ:
площадь заданной криволинейной трапеции равняется 4.

Ничего сложного в расчетах этого значения нет. Важна только предельная внимательность в вычислениях.

Для того чтобы чувствовать себя на уроках геометрии уверенно и успешно решать задачи, недостаточно выучить формулы. Их нужно в первую очередь понимать. Бояться, а тем более ненавидеть формулы — непродуктивно. В этой статье доступным языком будут проанализированы различные способы поиска площади трапеции. Для лучшего усвоения соответствующих правил и теорем уделим некоторое внимание ее свойствам. Это поможет разобраться в том, как работают правила и в каких случаях следует применять те или иные формулы.

Определяем трапецию

Что это за фигура в целом? Трапецией называют многоугольник из четырех углов с двумя параллельными сторонами. Две другие стороны трапеции могут быть наклонены под различными углами. Ее параллельные стороны называют основаниями, а для непараллельных сторон применяют наименование «боковые стороны» или «бедра». Такие фигуры довольно часто встречаются в обыденной жизни. Контуры трапеции можно увидеть в силуэтах одежды, предметах интерьера, мебели, посуды и многих других. Трапеция бывает разных видов: разносторонняя, равнобокая и прямоугольная. Более детально их типы и свойства разберем далее в статье.

Свойства трапеции

Остановимся коротко на свойствах этой фигуры. Сумма углов, прилегающих к любой боковой стороне, всегда равняется 180°. Надо заметить, что все углы трапеции в сумме составляют 360°. У трапеции существует понятие средней линии. Если соединить середины боковых сторон отрезком — это и будет средняя линия. Ее обозначают m. У средней линии есть важные свойства: она всегда параллельна основаниям (мы помним, что основания также параллельны между собой) и равна их полусумме:

Это определение обязательно надо выучить и понять, ведь это ключ к решению множества задач!

У трапеции всегда можно опустить высоту на основание. Высота — это перпендикуляр, часто обозначаемый символом h, который проведен из любой точки одного основания на другое основание или его продолжение. Средняя линия и высота помогут найти площадь трапеции. Подобные задачи являются самыми распространенными в школьном курсе геометрии и регулярно появляются среди контрольных и экзаменационных работ.

Самые простые формулы площади трапеции

Разберем две самые популярные и простые формулы, с помощью которых находят площадь трапеции. Достаточно умножить высоту на полусумму оснований, чтобы легко найти искомое:

S = h*(a + b)/2.

В этой формуле a, b обозначают основания трапеции, h — высоту. Для удобства восприятия в этой статье знаки умножения отмечены символом (*) в формулах, хотя в официальных справочниках знак умножения обычно опускают.

Рассмотрим пример.

Дано: трапеция с двумя основаниями, равными 10 и 14 см, высота составляет 7 см. Чему равна площадь трапеции?

Разберем решение этой задачи. По этой формуле сначала нужно найти полусумму оснований: (10+14)/2 = 12. Итак, полусумма равняется 12 см. Теперь полусумму умножаем на высоту: 12*7 = 84. Искомое найдено. Ответ: площадь трапеции равна 84 кв. см.

Вторая известная формула гласит: площадь трапеции равна произведению средней линии на высоту трапеции. То есть фактически вытекает из предшествующего понятия средней линии: S=m*h.

Использование диагоналей для вычислений

Другой способ нахождения площади трапеции на самом деле не так уж сложен. Он связан с ее диагоналями. По этой формуле для нахождения площади требуется умножить полупроизведение ее диагоналей (d 1 d 2) на синус угла между ними:

S = ½ d 1 d 2 sina.

Рассмотрим задачу, которая показывает применение этого способа. Дано: трапеция с длиной диагоналей равной соответственно 8 и 13 см. Угол a между диагоналями равняется 30°. Найти площадь трапеции.

Решение. Используя вышеприведенную формулу, легко вычислить требуемое. Как известно, sin 30° составляет 0,5. Следовательно, S = 8*13*0,5=52. Ответ: площадь равна 52 кв. см.

Ищем площадь равнобокой трапеции

Трапеция может быть равнобокой (равнобедренной). Ее боковые стороны одинаковы И углы при основаниях равны, что хорошо иллюстрирует рисунок. Равнобедренная трапеция имеет такие же свойства, что и обычная, плюс ряд особых. Вокруг равнобокой трапеции может быть описана окружность, и в нее может быть вписана окружность.

Какие же есть методики вычисления площади такой фигуры? Нижеприведенный способ потребует больших вычислений. Для его применения нужно знать значения синуса (sin) и косинуса (cos) угла при основании трапеции. Для их расчетов требуются либо таблицы Брадиса либо инженерный калькулятор. Вот эта формула:

S = c
*sin a
*(a
c
*cos a
),

где с
— боковое бедро, a
— угол при нижнем основании.

Равнобокая трапеция обладает диагоналями одинаковой длины. Верно и обратное утверждение: если у трапеции диагонали равны, то она является равнобедренной. Отсюда следующая формула, помогающая найти площадь трапеции — полупроизведение квадрата диагоналей на синус угла между ними: S = ½ d 2 sina.

Находим площадь прямоугольной трапеции

Известен частный случай прямоугольной трапеции. Это трапеция, у которой одна боковая сторона (ее бедро) примыкает к основаниям под прямым углом. Она имеет свойства обычной трапеции. Помимо этого, она обладает очень интересной особенностью. Разность квадратов диагоналей такой трапеции равняется разности квадратов ее оснований. Для нее используют все ранее приведенные методики вычисления площади.

Применяем смекалку

Есть одна хитрость, которая может помочь в случае забывчивости специфических формул. Рассмотрим внимательнее, что представляет собой трапеция. Если мысленно разделить ее на части, то мы получим знакомые и понятные геометрические фигуры: квадрат или прямоугольник и треугольник (один или два). Если известны высота и стороны трапеции, можно воспользоваться формулами площади треугольника и прямоугольника, после чего сложить все полученные величины.

Проиллюстрируем это следующим примером. Дана прямоугольная трапеция. Угол C = 45°, углы A, D составляют 90°. Верхнее основание трапеции равно 20 см, высота равна 16 см. Требуется вычислить площадь фигуры.

Данная фигура очевидным образом состоит из прямоугольника (если два угла равны 90°) и треугольника. Так как трапеция прямоугольная, следовательно, ее высота равна ее боковой стороне, то есть 16 см. Имеем прямоугольник со сторонами 20 и 16 см соответственно. Рассмотрим теперь треугольник, угол которого равен 45°. Мы знаем, что одна его сторона составляет 16 см. Так как эта сторона является одновременно высотой трапеции (а нам известно, что высота опускается на основание под прямым углом), следовательно, второй угол треугольника равен 90°. Отсюда оставшийся угол треугольника составляет 45°. Следствием этого мы получаем прямоугольный равнобедренный треугольник, у которого две стороны одинаковы. Значит, другая сторона треугольника равна высоте, то есть 16 см. Осталось вычислить площадь треугольника и прямоугольника и сложить полученные величины.

Площадь прямоугольного треугольника равна половине произведения его катетов: S = (16*16)/2 = 128. Площадь прямоугольника равняется произведению его ширины на длину: S = 20*16 = 320. Мы нашли требуемое: площадь трапеции S = 128 + 320 = 448 кв. см. Можно легко себя перепроверить, воспользовавшись вышеприведенными формулами, ответ будет идентичен.

Используем формулу Пика

Напоследок приведем еще одну оригинальную формулу, помогающую искать площадь трапеции. Она называется формулой Пика. Ею удобно пользоваться, когда трапеция нарисована на клетчатой бумаге. Подобные задачи часто встречаются в материалах ГИА. Выглядит она следующим образом:

S = M/2 + N — 1,

в этой формуле M — количество узлов, т.е. пересечений линий фигуры с линиями клетки на границах трапеции (оранжевые точки на рисунке), N — количество узлов внутри фигуры (синие точки). Удобнее всего пользоваться ею при нахождении площади неправильного многоугольника. Тем не менее, чем больше арсенал используемых методик, тем меньше ошибок и лучше результаты.

Разумеется, приведенными сведениями далеко не исчерпываются типы и свойства трапеции, а также способы поиска ее площади. В этой статье дан обзор наиболее важных ее характеристик. В решении геометрических задач важно действовать постепенно, начинать с легких формул и задач, последовательно закреплять понимание, переходить на другой уровень сложности.

Собранные воедино самые распространенные формулы помогут ученикам сориентироваться в разнообразных способах вычисления площади трапеции и более качественно подготовиться к тестам и контрольным работам по этой теме.

Как найти площадь трапеции

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно
или несколько ваших авторских прав, сообщите нам об этом, отправив письменное уведомление («Уведомление о нарушении»), содержащее
то
информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Интеграция

— Расчет максимальной площади трапеции

Зная, что ограждаемая область должна иметь форму трапеции, это означает, что средний сегмент должен быть параллелен существующей стене. Поскольку формула для определения площади трапеции: $$ A = \ frac {h} {2} (b_1 + b_2), $$ это означает, что если основания постоянны, а высота постоянна, площадь такая же, даже если расположение двух баз «смещено» относительно друг друга. Таким образом, для трапеции заданной фиксированной площади периметр минимизируется той, у которой боковые стороны, которые мы назовем $ l_1 $ и $ l_2 $, равны, то есть трапеция равнобедренная. Когда мы обращаем внимание на это рассуждение, из этого следует, что для фиксированной длины ограждения нам нужно только рассмотреть вопрос о разделении ограждения на три длины, скажем, $ x, y, z $, так что $ x = z $, поскольку любой другой выбор с $ x \ ne z $ дает трапецию с меньшей площадью.Поскольку $ x + y + z = 40 $, это дает нам второе ограничение, так что есть одна свободная переменная, которую следует учитывать, скажем, $ y $, которая однозначно определяет, как разрезать забор.

Однако для данного разделения ограждения существует множество способов разместить его у стены, чтобы ограждать трапециевидную область. С одной стороны, мы можем просто положить его на стену и не огораживать. С другой стороны, мы можем поставить концы забора как можно ближе друг к другу вдоль стены, которая, в зависимости от того, $ 2x

Тригонометрия дает нам $$ \ sin \ theta = \ frac {h} {x}, \\ b_1 = b_2 + 2 x \ cos \ theta. $$ Итак, площадь как функция от $ y $ и $ \ theta $ это $$ A (y, \ theta) = \ frac {40-y} {2} \ sin \ theta \ left (y + \ frac {40-y} {2} \ cos \ theta \ right).$$
Теперь я оставляю остальное в качестве упражнения по вычислению значений $ y, \ theta $, при которых $ A $ максимизируется.

Геометрия

— Доказательство площади трапеции разделением на два треугольника?

Я пытаюсь выяснить, как выводится формула для площади трапеции с двумя параллельными сторонами. В моем учебнике сказано, что формула площади трапеции получается путем деления трапеции на два треугольника, один с основанием a и высотой h, а другой — с основанием b и высотой h.

$ A = {a \ times h \ over 2} + {b \ times h \ over 2} = {a \ times h + b \ times h \ over 2} = {h (a + b) \ over 2} $

Я нарисовал эту диаграмму в GeoGebra. Возможно, она не нарисована в масштабе (не соответствует) схеме в моем учебнике, но на самом деле она похожа. Я действительно отсканировал диаграмму из своего учебника, а затем нарисовал эту диаграмму поверх нее. В учебнике вершины не отмечали. Но я назвал вершины (синие), чтобы упростить объяснение, чтобы нам было на что ссылаться.

Вышеупомянутая формула — это та, которая приводится в учебнике.

Судя по всему, имеет ли это хоть какой-то смысл? Они нарисовали эту диаграмму и назвали ее стороны как a, b, c и d. Они также нарисовали высоту h и диагональ DB.

Я не могу установить связь с формулой. И я видел фактическое доказательство площади такой трапеции на веб-сайте. Есть как минимум два разных доказательства площади трапеции. Возможно, наиболее распространенным доказательством является то, что вы разделите трапецию на два треугольника и прямоугольник.Но два треугольника ?? …

Я прошу кого-нибудь предоставить мне доказательство того, что формулу для площади трапеции можно вывести, разделив трапецию на два треугольника, как показано на этой диаграмме.

Я знаю, что площадь треугольника равна основанию, умноженному на высоту, деленную на два, или 1/2 основания, умноженному на высоту. По сути, это половина площади прямоугольника. Итак, если я рассмотрю первую часть приведенной выше формулы, я получу следующее.

(загрузка изображения в Imgur в данный момент не работает.Я вернусь к этому.)

Обновление:

$ [DBE] = {a \ times h \ over 2}

$

Я ограничил высоту пеленга. Площадь треугольника DBE составляет половину площади DFBE.

$ [BGA] = {b \ times h \ over 2} $

Я построил высоту AH. Площадь треугольника BHA составляет половину площади BEHA.

Но это дает мне перекрывающийся треугольник GBH. Он перекрывается треугольником DBE. Равна ли площадь GBH площади AGD?

А что с треугольниками EBC и DFA?

Обновление:

Я думаю, что понял прямо сейчас.Итак, вот еще раз вторая диаграмма.

И еще раз третья диаграмма.

На этот раз они не того же размера. Я думаю, что неправильно масштабировал экспорт в PNG-изображение. Но здесь вы можете видеть, что я закрасил и измерил площади прямоугольников и треугольников, чтобы показать, как они взаимодействуют с площадью трапеции.

Я знаю, что это не совсем формальное доказательство площади трапеции. Но я думаю, что теперь это имеет для меня смысл. Меня смущало то, что у треугольника ABD не было ни высоты, ни высоты.Или это не было внутри самого треугольника, это было за пределами треугольника . А также мне было трудно увидеть, как эта перекрывающаяся часть GHB «трансформируется» (или как вы хотите это называть) в это другое пустое пространство. Но теперь я это вижу более ясно.

Значит, это действительно происходит из формулы площади треугольника? Или, может быть, мы можем сказать, что площадь треугольника используется как постулат для доказательства площади трапеции?

Иллюстративная математика

Соответствие стандартам содержания:
8.G.B.7

Задача

Четырехугольник $ ABCD $ — трапеция, $ AD = 15 $, $ AB = 50 $, $ BC = 20 $, высота 12. Какова площадь трапеции?

IM Комментарий

Цель этого задания состоит в том, чтобы студенты использовали теорему Пифагора, чтобы найти неизвестные длины сторон трапеции, чтобы определить площадь. Эта задача потребует творческого подхода и настойчивости, поскольку учащиеся должны разложить данную трапецию на другие многоугольники, чтобы найти ее площадь.В предложенном решении перпендикуляры от A и B нарисованы к основанию $ \ overline {DC} $, а затем используется теорема Пифагора для определения длин недостающих сегментов. В качестве альтернативы, $ \ overline {AB} $ можно удлинить, и можно провести перпендикуляры от $ C $ и $ D $ к этому расширенному сегменту, получив прямоугольник, из которого нужно вычесть два треугольника, чтобы получить трапецию $ ABCD $. Наконец, можно нарисовать одну из диагоналей $ \ overline {AC} $ или $ \ overline {DB} $, разделив $ ABCD $ на два треугольника, и можно вычислить площадь этих треугольников.Все три метода требуют двух приложений теоремы Пифагора для завершения вычислений.

В идеале ученики должны думать о добавлении вспомогательных линий (MP7), но некоторые ученики могут не думать о таком подходе. Если группа учащихся непродуктивно пытается решить эту задачу, учитель может предложить учащимся нарисовать одну или обе высоты, указанные в решении, чтобы создать строительные леса.

Это задание было адаптировано из задачи № 20 теста 8 Американской математической олимпиады (AMC) 2011 года.Ответы на несколько вариантов ответов для задачи имели следующее распределение:

Выбор Ответ Процент ответов
(А) 600 10,84
(В) 650 16,80
(К) 700 18.85
(Д) * 750 30,78
(R) 800 10,25
Пропустить 12,40

Из 153 485 учащихся, принявших участие, 72 648 или 47% были в 8-м классе, 50 433 или 33% — в 7-м классе, а остальные были младше 7-го класса.

Решение

Мы можем разделить трапецию на прямоугольник и два прямоугольных треугольника, нарисовав перпендикуляры от $ A $ и $ B $ к основанию $ \ overline {DC} $, как показано на рисунке ниже:

Чтобы увидеть, что $ ABFE $ — прямоугольник, обратите внимание: поскольку $ ABC $ — трапеция, это означает, что $ \ overleftrightarrow {AB} $ и
$ \ overleftrightarrow {CD} $ параллельны. Поскольку $ \ overleftrightarrow {AE} $ и
$ \ overleftrightarrow {BF} $ перпендикулярны $ \ overleftrightarrow {DC} $, они также перпендикулярны $ \ overleftrightarrow {AB} $.2 = 400 -144 = 256 $, так что $ | FC | = 16 $.

Собирая эту информацию вместе, получаем, что площадь $ \ Triangle DAE $ равна $ \ frac {1} {2}.
\ раз 9 \ раз 12 = 54 $. Площадь $ \ треугольника CBF $ равна $ \ frac {1} {2} \ times 16 \ times 12 = 96 $. Наконец, прямоугольник $ ABCD $ 50 на 12, поэтому у него есть площадь
600. Сложение этих трех величин дает
$$
\ text {Площадь} (ABCD) = 54 + 96 + 600 = 750.
$$

В качестве альтернативы, если учащиеся знают формулу площади трапеции, а именно половину высоты, умноженную на сумму длин двух параллельных сторон, мы имеем, что высота равна 12.Две параллельные стороны имеют длину 50 и 50 + 16 + 9 или 75. Таким образом, применение формулы дает
$$
\ frac {1} {2} \ times 12 \ times (50 + 75) = 750.
$$

Площадь трапеции — JavaTpoint

Трапеция представляет собой выпуклый четырехугольник. Это означает, что замкнутая форма имеет четыре стороны с одной парой параллельных сторон.

В этом разделе мы узнаем , как найти площадь трапеции.

Трапеция

Трапеция — это гематрическая форма с четырьмя сторонами, в которой пара противоположных сторон должна быть параллельна, называется трапецией .Параллельные стороны известны как основание , , а непараллельные стороны — как опора . Параллельные стороны могут быть горизонтальными, вертикальными или наклонными (диагональными). Она также известна как трапеция .

На следующем рисунке основание 1 и основание 2 перпендикулярны пунктирной линии, которая представляет высоту (высота). Высота перпендикулярна расстоянию между двумя базами.

Свойства трапеции

  • Трапеция называется параллелограммом, если обе пары ее противоположных сторон параллельны.
  • Трапеция — это квадрат, если обе пары его противоположных сторон параллельны; все его стороны равной длины и расположены под прямым углом друг к другу.
  • Трапеция может быть прямоугольником, если обе пары ее противоположных сторон параллельны; его противоположные стороны равны по длине и расположены под прямым углом друг к другу.
  • Каждое основание должно быть перпендикулярно высоте.

Типы трапеции

Есть три типа трапеции:

  • Правая трапеция: Состоит из пары прямых углов.
  • Равнобедренная трапеция: Форма трапеции с равной длиной непараллельных сторон. На следующем изображении стороны AD и BC имеют одинаковую длину.
  • Масштабная трапеция: Форма трапеции, не имеющая равных сторон и равных углов.

Различные формы трапеции:

Чтобы найти площадь трапеции, выполните следующие действия:

  • Добавить базы
  • Умножить сумму на высоту
  • Разделите результат на 2

Область формулы трапеции

Площадь трапеции равна средней ширине, умноженной на высоту. О реализации в формуле:

Площадь трапеции (A) = ½ (b1 + b2) * h

или

Площадь трапеции (A) = h / 2 * (b1 + b2)

или

Площадь трапеции (A) = h * (b1 + b2 / 2)

Где b1 и b2 — длина каждой базы, а h — высота.

Вывод формулы трапеции

Давайте выведем формулу, используя параллелограмм из двух совпадающих трапеций.

  • Нарисуйте трапецию с базовой длиной b1 и b2 , а высота — h .
  • Создайте копию его.
  • Поверните копию трапеции на .
  • Добавьте копию трапеции к исходной трапеции.

Когда мы объединяем две трапеции (как указано выше), получается форма параллелограмма. Вновь сформированная форма имеет две пары противоположных конгруэнтных сторон.

Мы знаем, что:

площадь параллелограмма (А) = b * h

Это означает, что площадь параллелограмма равна высоте (высоте), умноженной на длину любого основания. Из рисунка выше длина обоих оснований равна b1 + b2.

По формуле параллелограмма получаем

А = (b1 + b2) * h

Вышеупомянутая область представляет собой область двух трапеций.Итак, нам нужно разделить его на 2, чтобы получить площадь одной трапеции.

Площадь трапеции (A) = (b1 + b2) * h / 2

Составив приведенную выше формулу, получим:

Площадь трапеции (A) = ½ * h * (b1 + b2)

Другой способ вычислить площадь трапеции, разделив трапецию на два треугольника.

Теперь у нас есть два треугольника ∆ABD и ∆BCD. Площадь треугольников будем рассчитывать отдельно.Общая площадь треугольников будет площадью трапеции.

Площадь ∆

A = ½ b1 * h

Площадь ∆

A = ½ b2 * h

Складывая площадь, получаем:

A + A = ½ (b1 * h) + ½ (b2 * h)

2А = (b1 + b2) * ч

A = 1/2 (b1 + b2) * h

Примеры

Пример 1: Если основания трапеции составляют 30 дюймов и 20 дюймов. Высота трапеции 4 дюйма.Найдите площадь трапеции.

Решение:

Дано, b1 = 30 дюймов, b2 = 20 дюймов и высота = 4 дюйма

Площадь трапеции (A) = 1/2 (b1 + b2) * h

A = ½ (30 + 20) * 4

A = ½ (50) * 4

А = 200/2

A = 100 дюймов 2

Площадь трапеции 100 из 2 .

Пример 2: Найдите площадь данной трапеции.

Решение:

Из приведенного выше рисунка мы будем рассматривать только параллельные стороны AB и CD, потому что он составляет прямой угол с параллельными сторонами.

Дано, b1 = 12 см, b2 = 8 см и h = 6 см

Мы знаем,

A = h / 2 (b1 + b2)

Подставляя значения в приведенную выше формулу, получаем:

А = 6/2 (12 + 8)
А = 6/2 (20)
A = 60 см 2

Площадь трапеции 60 см 2 .

Пример 3: Найдите площадь трапеции с основаниями 10 м и 7 м соответственно. Высота трапеции 5 м. Найдите область.

Решение:

Сначала мы разделим трапецию на два треугольника, как показано на следующем рисунке.

Теперь найдите площадь треугольников отдельно. Мы знаем, что:

Площадь треугольника (A) = 1/2 b * h

Площадь ∆ABC = ½ (7 * 5)

А = 35/2

А = 17.5 м 2

Аналогично, площадь ∆CDA = ½ (10 * 5)

А = 50/2

A = 25 м 2

Складывая площади ∆ABC и ∆CDA, мы получаем общую площадь трапеции.

Площадь трапеции = Площадь ∆ABC + Площадь ∆CDA

Площадь трапеции (A) = 17,5 + 25

A = 42,5 м 2

Площадь трапеции 42,5 м 2 .


Площадь любого неправильного четырехугольника

Плоская фигура, ограниченная четырьмя отрезками прямых, называется неправильным четырехугольником.Площадь любого неправильного четырехугольника можно вычислить, разделив его на треугольники.

Пример :

Найдите площадь четырехугольника $$ ABCD $$, стороны которого равны $$ 9 $$ м, $$ 40 $$ м, $$ 28 $$ м и $$ 15 $$ м соответственно, а угол между первыми двумя сторонами является прямым. угол.

Решение :

На рисунке мы замечаем, что $$ ABD $$ представляет собой прямоугольный треугольник, в котором $$ AB = 40 $$ m, $$ AD = 9 $$ m.2}} = \ sqrt {1681} = 41 \\ \ end {собрано} \]

Теперь площадь $$ \ Delta ABD = \ frac {1} {2} \ times 40 \ times 9 = 180 $$ m
In $$ \ Delta BCD $$, $$ BD = a = 41 $$ m, $$ DC = b = 28 $$ m, $$ CB = c = 15 $$ m
$$ \ поэтому s = \ frac {{a + b + c}} {2} = \ frac {{41 + 28 + 15}} {2} = 42 $$ m

Теперь,
\ [\ begin {gather} {\ text {Area}} \, {\ text {of}} \, \ Delta BCD = \ sqrt {s (s — a) (s — b) (s — c)} \, \\ {\ text {Area}} \, {\ text {of}} \, \ Delta BCD = \ sqrt {42 (42 — 41) (42 — 28) (42 — 15)} = \ sqrt {42 \ times 14 \ times 27} = 126 \, sq \, m \\ \ end {собрано} \]

Площадь четырехугольника $$ ABCD $$$$ = $$ Площадь $$ \ Delta ABD $$ $$ + $$ Площадь $$ \ Delta BCD $$
Площадь четырехугольника $$ ABCD $$ $$ = (180 + 126) = 306 $$ квадратных метров.

Пример :

В четырехугольнике диагональ составляет $$ 42 $$ см, а два перпендикуляра на нем от других вершин равны $$ 8 $$ см и $$ 9 $$ см соответственно. Найдите площадь четырехугольника.

Решение :

Учитывая, что из рисунка $$ AC = 42 $$ м, $$ BN = 9 $$ м, $$ DM = 8 $$ м
Площадь $$ ABCD = $$ Площадь $$ \ Delta ABC + $$ область $$ \ Delta ACD $$
Площадь $$ ABCD $$$$ = \ frac {1} {2} \ times 9 \ times 42 + \ frac {1} {2} \ times 8 \ умножить на 42 = 189 + 168 = 357 $$ кв.

Доказательство площади трапеции

Первый хороший способ начать с доказательства площади трапеции — нарисовать трапецию и превратить трапецию в прямоугольник.

Посмотрите на трапецию ABCD выше. Как бы вы превратили это в прямоугольник?

Нарисуйте среднее основание (показано красным), которое соединяет среднюю точку двух сторон, которые не параллельны.

Затем сделайте 4 треугольника, как показано ниже:

Назовем две параллельные стороны синим цветом (основания) b 1 и b 2

Треугольники EDI и CFI равны или равны, а треугольники KAJ и RBJ равны или равны.Следовательно, вы можете создать прямоугольник, вращая треугольники EDI вокруг точки I на 180 градусов против часовой стрелки и вращая треугольник KAJ по часовой стрелке, но все еще на 180 градусов вокруг точки J.

Поскольку вы можете создать прямоугольник с трапецией, обе фигуры имеют одинаковые область.

Причина, по которой EDI треугольника совпадает с треугольником IFC, связана с ASA. Мы можем найти два угла внутри треугольников, которые одинаковы, и сторона между углами одинакова для обоих треугольников.

Те же углы показаны ниже.Они красного и зеленого цвета. Углы, обозначенные зеленым цветом, — прямые. Углы, отмеченные красным, — это вертикальные углы.

Это важно, потому что, если эти два треугольника не совпадают или не совпадают, мы не можем создать прямоугольник с трапецией, вращая треугольник EDI. Он не поместится должным образом

Опять же, тот же аргумент применим к двум треугольникам слева

Следовательно, если мы сможем найти площадь прямоугольника, трапеция будет иметь такую ​​же площадь.

Найдем площадь прямоугольника. Нам снова понадобится следующая цифра:

Сначала сделайте следующие важные наблюдения:

b 1 = RC

BF = BR + b 1 + CF

b 2 = AD

KE = AD — AK — ED, поэтому KE = b 2 — AK — ED

AK = BR и ED = CF

Обратите внимание, что вы можете найти длину линии, выделенную красным (среднее основание), взяв среднее значение длины BF и длины KE

Так как длина линии, выделенной красным, такая же, как у основания прямоугольника, мы можем умножить ее на высоту, чтобы получить площадь трапеции.

В итоге получаем:

Таким образом может быть выполнено альтернативное доказательство площади трапеции.

Начните с такой же трапеции. Нарисуйте высоты из вершин B и C. Это разделит трапецию на 3 формы: 2 треугольника и прямоугольник.

Обозначьте основание малого треугольника x и основание большего треугольника y

Обозначьте малое основание трапеции b 1 и b 2

b 1 = b 2 — (x + y), поэтому x + y = b 2 — b 1

Площадь прямоугольника b 1 × h, но площадь треугольники с основанием x и y:

Чтобы получить общую площадь, просто сложите эти площади вместе:

Доказательство площади трапеции завершено.Если возникнут вопросы, свяжитесь со мной.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *