Как вычесть из корня корень: Сложение и вычитание квадратных корней: определение, примеры, правила

Содержание

Как складывать квадратные корни

Квадратным корнем из числа X называется число A, которое в процессе умножения самого на себя (A * A) может дать число X
Т.е. A * A = A2 = X, и √X = A.

Над квадратными корнями (√x), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1.

Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9. Первое число 4 является квадратом числа 2. Второе число 9 является квадратом числа 3. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54.

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3,
54 = 2 * 3 * 3 * 3.

В числе 24 мы имеем множитель 4, его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9.

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b).
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b.

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a – b.

Аналогично, если в знаменателе имеется разность корней: √a — √b, числитель и знаменатель дроби умножаем на выражение √a + √b.

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ( (√3 + √5) * (√3 — √5) ) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3).

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5).
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5.

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5.

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\)). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\), при возведении которого в квадрат мы получим число \(a\): \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\). 2=400\\
\hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt
a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt
2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt
2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt
2+7\). Дальше это выражение, к сожалению, упростить никак нельзя

 
\(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad
\sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot
2}=\sqrt{64}=8\);
 
\(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);
 
\(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}=
5\cdot 8=40\).
 
\(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}=
\sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}=
\sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{
\dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot
\sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot
\sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\),
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\). 2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
 

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. 2\\
&2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!
 
\(\bullet\) Следует запомнить, что \[\begin{aligned}
&\sqrt 2\approx 1,4\\[1ex]
&\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
 
\(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. 2=168\cdot 168=28224\).
Следовательно, \(\sqrt{28224}=168\). Вуаля!

Как складывать и вычитать квадратные корни

Сейчас в школьной программе происходит, что-то не совсем понятно. Одно радует, что в математике все остается неизменной. Работа с корнями, а именно складывание и вычитание не очень сложное действие. Но у некоторых учеников вызывают определенные трудности.

И в этой статье мы разберем правила, как складывать и вычитать квадратные корни.

Вычитать и складывать квадратные корни можно если срабатывает условие, что у этих корней имеются одинаковые подкоренные выражения. Другими словами, мы можем проводить действия с 2√3 и 4√3, а не с 2√3 и 2√7. Но можно провести действия по упрощению подкоренного выражения, чтобы потом привести их к корням, которые будут иметь одинаковые подкоренные выражения. И только после этого уже начать складывать или вычитать.  

Теория складывания и вычитания квадратных корней

Сам принцип очень простой. И составит из трех действий. Нужно упростить подкоренной выражение. Найти получившиеся одинаковые подкоренные выражения и сложить или вычесть корни.

Как упростить подкоренное выражение

Для этого нужно разложить подкоренное число, что бы состояло из двух множителей. Главное условие. Одно из этих чисел должно быть квадратным числом (пример: 25 или 9). После этого действия мы извлекаем корень из данного квадратного числа. И записываем это число перед нашим корнем, а под корнем у нас остается второй множитель.

Например, 6√50 — 2√8 + 5√12

6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Тут мы раскладываем 50 на два множителя 25 и 2. Потом из 25 мы извлекаем квадратный корень (получаем число 5) и выносим его из под корня. Далее 5 умножаем на 6 и получаем 30√2

2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. В данном примеры мы 8 раскладываем на два числа 4 и 2. Из 4 извлекаем корень и выносим получившееся число за корень и умножаем его на то число которое было уже за корнем.

5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Тут мы, как и раньше число под корнем раскладываем на два числа 4 и 3. Из 4-х извлекаем корень. Получившееся число выносим за корень и перемножаем его на то число которое было за корнем.  

В итоге мы преобразовали уравнение 6√50 — 2√8 + 5√12 в такой вид 30√2 — 4√2 + 10√3

Подчеркиваем корни у которых одинаковы подкоренные выражения

В нашем примере 30√2 — 4√2 + 10√3 мы выделяем 30√2 и 4√2 Так, как у этих чисел одинаковое подкоренное число 2.
Если в Вашем примере несколько одинаковых подкоренных выражений. Подчеркивайте одинаковые из них разными линиями.

Складываем или вычитаем наши корни

Теперь складываем или вычитаем числа которые имеют одинаковые подкоренные выражения. А то, что под корнем мы оставляем неизменным. Смысл в том, чтобы показать сколько всего корней с определенными подкоренными выражениями есть в заданном уравнении.

В нашем примере 30√2 — 4√2 + 10√3 мы от 30 отнимаем 4 и получаем 26√2

Ответ в нашем примере будет такой. 26√2 + 10√3

Sabibon — самое интересное в интернете

Вычитание числа из корня

Извлечение квадрантного корня из числа не единственная операция, которую можно производить с этим математическим явлением. Так же как и обычные числа, квадратные корни складывают и вычитают.

Правила сложения и вычитания квадратных корней

Такие действия, как сложение и вычитание квадратного корня, возможны только при условии одинакового подкоренного выражения.

Можно сложить или вычесть выражения 2 3 и 6 3 , но не 5 6 и 9 4 . Если есть возможность упростить выражение и привести его к корням с одинаковым подкоренным числом, то упрощайте, а потом складывайте или вычитайте.

Действия с корнями: основы

6 50 – 2 8 + 5 12

  1. Упростить подкоренное выражение. Для этого необходимо разложить подкоренное выражение на 2 множителя, один из которых, — квадратное число (число, из которого извлекается целый квадратный корень, например, 25 или 9).
  2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. Обращаем ваше внимание, что второй множитель заносится под знак корня.
  3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
  4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Если у вас пример с большим количеством одинаковых подкоренных выражений, то подчеркивайте такие выражения одинарными, двойными и тройными линиями, чтобы облегчить процесс вычисления.

Давайте попробуем решить данный пример:

6 50 = 6 ( 25 × 2 ) = ( 6 × 5 ) 2 = 30 2 . Для начала необходимо разложить 50 на 2 множителя 25 и 2, затем извлечь корень из 25, который равен 5, а 5 вынести из-под корня. После этого нужно умножить 5 на 6 (множитель у корня) и получить 30 2 .

2 8 = 2 ( 4 × 2 ) = ( 2 × 2 ) 2 = 4 2 . Сперва необходимо разложить 8 на 2 множителя: 4 и 2. Затем из 4 извлечь корень, который равен 2, а 2 вынести из-под корня. После этого нужно умножить 2 на 2 (множитель у корня) и получить 4 2 .

5 12 = 5 ( 4 × 3 ) = ( 5 × 2 ) 3 = 10 3 . Сперва необходимо разложить 12 на 2 множителя: 4 и 3. Затем извлечь из 4 корень, который равен 2, и вынести его из-под корня. После этого нужно умножить 2 на 5 (множитель у корня) и получить 10 3 .

Результат упрощения: 30 2 – 4 2 + 10 3

30 2 – 4 2 + 10 3 = ( 30 – 4 ) 2 + 10 3 = 26 2 + 10 3 .

В итоге мы увидели, сколько одинаковых подкоренных выражений содержится в данном примере. А сейчас попрактикуемся на других примерах.

  • Упрощаем ( 45 ) . Раскладываем 45 на множители: ( 45 ) = ( 9 × 5 ) ;
  • Выносим 3 из-под корня ( 9 = 3 ) : 45 = 3 5 ;
  • Складываем множители у корней: 3 5 + 4 5 = 7 5 .
  • Упрощаем 6 40 . Раскладываем 40 на множители: 6 40 = 6 ( 4 × 10 ) ;
  • Выносим 2 из-под корня ( 4 = 2 ) : 6 40 = 6 ( 4 × 10 ) = ( 6 × 2 ) 10 ;
  • Перемножаем множители, которые стоят перед корнем: 12 10 ;
  • Записываем выражение в упрощенном виде: 12 10 – 3 10 + 5 ;
  • Поскольку у первых двух членов одинаковые подкоренные числа, мы можем их вычесть: ( 12 – 3 ) 10 = 9 10 + 5 .

Как мы видим, упростить подкоренные числа не представляется возможным, поэтому ищем в примере члены с одинаковыми подкоренными числами, проводим математические действия (складываем, вычитаем и т.д.) и записываем результат:

( 9 – 4 ) 5 – 2 3 = 5 5 – 2 3 .

Советы:

  • Перед тем, как складывать или вычитать, необходимо обязательно упростить (если это возможно) подкоренные выражения.
  • Складывать и вычитать корни с разными подкоренными выражениями строго воспрещается.
  • Не следует суммировать или вычитать целое число или корень: 3 + ( 2 x ) 1 / 2 .
  • При выполнении действий с дробями, необходимо найти число, которое делится нацело на каждый знаменатель, потом привести дроби к общему знаменателю, затем сложить числители, а знаменатели оставить без изменений.

Складывать и вычитать квадратные корни можно только при условии, что у них одинаковое подкоренное выражение, то есть вы можете сложить или вычесть 2√3 и 4√3, но не 2√3 и 2√5. Вы можете упростить подкоренное выражение, чтобы привести их к корням с одинаковыми подкоренными выражениями (а затем сложить или вычесть их).

Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

  • найти квадратные или кубические корни из заданных чисел;
  • выполнить математическое действие с дробными степенями.
Число знаков после запятой:

Что такое квадратный корень

Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

Проводим расчеты вручную

Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

8, 25, 36, 49 — квадратные числа, поскольку:

Получается, что квадратные множители — множители, которые являются квадратными числами.

Возьмем 784 и извлечем из него корень.

Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.
Применим правило

Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

Ответ.

2.Неделимое. Его нельзя разложить на квадратные множители.

Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

Раскладываем число 252 на квадратный и обычный множитель.
Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки.Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

между 2 и 4.

Оцениваем значениеВероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76

7.

Вычисляем корень

Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

При делении в столбик получается максимально точный ответ при извлечении корня.

Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

— целую часть справа налево;

— число после запятой слева направо.

Пример: 3459842,825694 → 3 45 98 42, 82 56 94

Допускается, что вначале остается непарное число.

Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.

У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 =

Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

Примечание: числа должны быть одинаковыми.

Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

Снесите следующую пару чисел и запишите возле полученной разницы слева.

Вычтите полученное справа произведение из числа слева.

Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение прочерками, подбираем множители для него и так далее.

Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

1. Введите желаемое количество знаков после запятой.

2. Укажите степень корня (если он больше 2).

3. Введите число, из которого планируете извлечь корень.

Сложение и вычитание квадратных корней примеры. Как складывать квадратные корни

Содержимое:

Складывать и вычитать квадратные корни можно только при условии, что у них одинаковое подкоренное выражение, то есть вы можете сложить или вычесть 2√3 и 4√3, но не 2√3 и 2√5. Вы можете упростить подкоренное выражение, чтобы привести их к корням с одинаковыми подкоренными выражениями (а затем сложить или вычесть их).

Шаги

Часть 1
Постигаем основы

  1. 1
    (выражение под знаком корня).
    Для этого разложите подкоренное число на два множителя, один из которых является квадратным числом (число, из которого можно извлечь целый корень, например, 25 или 9). После этого извлеките корень из квадратного числа и запишите найденное значение перед знаком корня (под знаком корня останется второй множитель). Например, 6√50 — 2√8 + 5√12. Числа, стоящее перед знаком корня, являются множителями соответствующих корней, а числа под знаком корня – это подкоренные числа (выражения). Вот как решать данную задачу:

    • 6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Здесь вы раскладываете 50 на множители 25 и 2; затем из 25 извлекаете корень, равный 5, и 5 выносите из-под корня. Затем 5 умножаете на 6 (множитель у корня) и получаете 30√2.
    • 2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. Здесь вы раскладываете 8 на множители 4 и 2; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 2 (множитель у корня) и получаете 4√2.
    • 5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Здесь вы раскладываете 12 на множители 4 и 3; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 5 (множитель у корня) и получаете 10√3.
  2. 2
    Подчеркните корни, подкоренные выражения которых одинаковы.
    В нашем примере упрощенное выражение имеет вид: 30√2 — 4√2 + 10√3. В нем вы должны подчеркнуть первый и второй члены (30√2
    и 4√2
    ), так как у них одинаковое подкоренное число 2. Только такие корни вы можете складывать и вычитать.
  3. 3
    Если вам дано выражение с большим количеством членов, многие из которых имеют одинаковые подкоренные выражения, используйте одинарное, двойное, тройное подчеркивание для обозначения таких членов, чтобы облегчить решение этого выражения.
  4. 4
    У корней, подкоренные выражения которых одинаковы, сложите или вычтите множители, стоящие перед знаком корня, а подкоренное выражение оставьте прежним (не складывайте и не вычитайте подкоренные числа!
    ). Идея в том, чтобы показать, сколько всего корней с определенным подкоренным выражением содержится в данном выражении.

    • 30√2 — 4√2 + 10√3
      =
    • (30 — 4)√2 + 10√3
      =
    • 26√2 + 10√3

Часть 2
Практикуемся на примерах

  1. 1
    Пример 1:
    √(45) + 4√5.

    • Упростите √(45). Разложите 45 на множители: √(45) = √(9 x 5).
    • Вынесите 3 из-под корня (√9 = 3): √(45) = 3√5.
    • Теперь сложите множители у корней: 3√5 + 4√5 = 7√5
  2. 2
    Пример 2:
    6√(40) — 3√(10) + √5.

    • Упростите 6√(40). Разложите 40 на множители: 6√(40) = 6√(4 x 10).
    • Вынесите 2 из-под корня (√4 = 2): 6√(40) = 6√(4 x 10) = (6 x 2)√10.
    • Перемножьте множители перед корнем и получите 12√10.
    • Теперь выражение можно записать в виде 12√10 — 3√(10) + √5. Так как у первых двух членов одинаковые подкоренные числа, вы можете вычесть второй член из первого, а первый оставить без изменений.
    • Вы получите: (12-3)√10 + √5 = 9√10 + √5.
  3. 3
    Пример 3.
    9√5 -2√3 — 4√5. Здесь ни одно из подкоренных выражений нельзя разложить на множители, поэтому упростить это выражение не получится. Вы можете вычесть третий член из первого (так как у них одинаковые подкоренные числа), а второй член оставить без изменений. Вы получите: (9-4)√5 -2√3 = 5√5 — 2√3.
  4. 4
    Пример 4.
    √9 + √4 — 3√2.

    • √9 = √(3 х 3) = 3.
    • √4 = √(2 х 2) = 2.
    • Теперь вы можете просто сложить 3 + 2, чтобы получить 5.
    • Окончательный ответ: 5 — 3√2.
  5. 5
    Пример 5.
    Решите выражение, содержащее корни и дроби. Вы можете складывать и вычислять только те дроби, у которых общий (одинаковый) знаменатель. Дано выражение (√2)/4 + (√2)/2.

    • Найдите наименьший общий знаменатель этих дробей. Это число, которое делится нацело на каждый знаменатель. В нашем примере на 4 и на 2 делится число 4.
    • Теперь вторую дробь умножьте на 2/2 (чтобы привести ее к общему знаменателю; первая дробь уже приведена к нему): (√2)/2 х 2/2 = (2√2)/4.
    • Сложите числители дробей, а знаменатель оставьте прежним: (√2)/4 + (2√2)/4 = (3√2)/4 .
  • Перед суммированием или вычитанием корней обязательно упростите (если возможно) подкоренные выражения.

Предупреждения

  • Никогда не суммируйте и не вычитайте корни с разными подкоренными выражениями.
  • Никогда не суммируйте и не вычитайте целое число и корень, например, 3 + (2x) 1/2
    .

    • Примечание: «х» в одной второй степени и квадратный корень из «х» – это одно и то же (то есть x 1/2 = √х).

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней
, каковы свойства корней
, и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями
— это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает.2 = x, √x = a. Как и над любыми числами, над квадратными корнями можно выполнять арифметические операции сложения и вычитания.

Инструкция

  • Во-первых, при сложении квадратных корней попробуйте извлечь эти корни. Это будет возможно, если числа под знаком корня являются полными квадратами. Например, пусть задано выражение √4 + √9. Первое число 4 – это квадрат числа 2. Второе число 9 – это квадрат числа 3. Таким образом получается, что: √4 + √9 = 2 + 3 = 5.
  • Если под знаком корня нет полных квадратов, то попробуйте вынести из под знака корня множитель числа. Например, пусть дано выражение √24 + √54. Разложите числа на множители: 24 = 2 * 2 * 2 * 3, 54 = 2 * 3 * 3 * 3. В числе 24 имеется множитель 4, который можно вынести из под знака квадратного корня. В числе 54 — множитель 9. Таким образом, получается что: √24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6. В данном примере в результате выноса множителя из под знака корня получилось упростить заданное выражение.
  • Пусть сумма двух квадратных корней является знаменателем дроби, например, A / (√a + √b). И пусть перед вами стоит задача «избавиться от иррациональности в знаменателе». Тогда можно воспользоваться следующим способом. Умножьте числитель и знаменатель дроби на выражение √a — √b. Таким образом в знаменателе получится формула сокращенного умножения: (√a + √b) * (√a — √b) = a – b. По аналогии, если в знаменателе дана разность корней: √a — √b, то числитель и знаменатель дроби необходимо умножить на выражение √a + √b. Для примера, пусть дана дробь 4 / (√3 + √5) = 4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3).
  • Рассмотрите более сложный пример избавления от иррациональности в знаменателе. Пусть дана дробь 12 / (√2 + √3 + √5). Необходимо умножить числитель и знаменатель дроби на выражение √2 + √3 — √5:
    12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / ((√2 + √3 + √5) * (√2 + √3 — √5)) = 12 * (√2 + √3 — √5) / (2 * √6) = √6 * (√2 + √3 — √5) = 2 * √3 + 3 * √2 — √30.
  • И наконец, если вам необходимо только приблизительное значение, то можно посчитать значения квадратных корней на калькуляторе. Вычислите значения отдельно для каждого числа и запишите с необходимой точностью (например, два знака после запятой). А затем совершите требуемые арифметические операции, как с обычными числами. Например, пусть необходимо узнать приблизительное значение выражения √7 + √5 ≈ 2,65 + 2,24 = 4,89.

Свойства квадратных корней

До сих пор мы осуществляли над числами пять арифметических операций: сложение, вычитание, умножение
, деление и возведение в степень, причем при вычислениях активно использовали различные свойства этих операций, например а + b = b + а, аn-bn = (аb)n и т. д.

В этой главе введена новая операция — извлечение квадратного корня из неотрицательного числа. Чтобы успешно ее использовать, нужно познакомиться со свойствами этой операции, что мы и сделаем в настоящем параграфе.

Доказательство. Введем следующие обозначения:https://pandia.ru/text/78/290/images/image005_28.jpg» alt=»Равенство»Задание»> Имеются только свойства, касающиеся умножения и деления квадратных корней. Будьте внимательны и осторожны, не принимайте желаемое за действительное.

Завершая параграф, отметим еще одно достаточно простое и в то же время важное свойство:
если a > 0 и n — натуральное число
, то

Преобразование выражений, содержащих операцию извлечения квадратного корня

До сих пор мы с вами выполняли преобразования толькорациональных выражений
, используя для этого правила действий над многочленами и алгебраическими дробями, формулы сокращенного умножения и т. д. В этой главе мы ввели новую операцию — операцию извлечения квадратного корня; мы установили, что

где, напомним, a, b — неотрицательные числа.

Используя эти формулы
, можно выполнять различные преобразования выражений, содержащих операцию извлечения квадратного корня. Рассмотрим несколько примеров, причем во всех примерах будем предполагать, что переменные принимают только неотрицательные значения.

Пример 3.
Внести множитель под знак квадратного корня:

Пример 6
. Упростить выражение Решение. Выполним последовательные преобразования:

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Что сумма корней. Действие с корнями: сложение и вычитание

Тема про квадратные корни является обязательной в школьной программе курса математики. Без них не обойтись при решении квадратных уравнений. А позже появляется необходимость не только извлекать корни, но и выполнять с ними другие действия. Среди них достаточно сложные: возведение в степень, умножение и деление. Но есть и достаточно простые: вычитание и сложение корней. Кстати, они только на первый взгляд кажутся такими. Выполнить их без ошибок не всегда оказывается просто для того, кто только начинает с ними знакомиться.

Что такое математический корень?

Это действие возникло в противовес возведению в степень. Математика предполагает наличие двух противоположных операций. На сложение существует вычитание. Умножению противостоит деление. Обратное действие степени — это извлечение соответствующего корня.

Если в степени стоит двойка, то и корень будет квадратным. Он является самым распространенным в школьной математике. У него даже нет указания, что он квадратный, то есть возле него не приписывается цифра 2. Математическая запись этого оператора (радикала) представлена на рисунке.

Из описанного действия плавно вытекает его определение. Чтобы извлечь квадратный корень из некоторого числа, нужно выяснить, какое даст при умножении на себя подкоренное выражение. Это число и будет квадратным корнем. Если записать это математически, то получится следующее: х*х=х 2 =у, значит √у=х.

Какие действия с ними можно выполнять?

По своей сути корень — это дробная степень, у которой в числителе стоит единица. А знаменатель может быть любым. Например, у квадратного корня он равен двум. Поэтому все действия, которые можно выполнить со степенями, будут справедливы и для корней.

И требования к этим действиям у них одинаковые. Если умножение, деление и возведение в степень не встречают затруднений у учеников, то сложение корней, как и их вычитание, иногда приводит в замешательство. А все потому что хочется выполнить эти операции без оглядки на знак корня. И здесь начинаются ошибки.

По каким правилам выполняется их сложение и вычитание?

Сначала нужно запомнить два категорических «нельзя»:

  • нельзя выполнять сложение и вычитание корней, как у простых чисел, то есть невозможно записать подкоренные выражения суммы под один знак и выполнять с ними математические операции;
  • нельзя складывать и вычитать корни с разными показателями, например квадратный и кубический.

Наглядный пример первого запрета: √6 + √10 ≠ √16, но √(6 + 10) = √16
.

Во втором случае лучше ограничиться упрощением самих корней. А в ответе оставить их сумму.

Теперь к правилам

  1. Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
  2. Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
  3. Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
  4. Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
  5. Вынести из-под знака радикала множитель, который дает целую степень.
  6. Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.

В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.

Это вся информация о том, как выполняется сложение корней. Примеры, расположенные ниже, проиллюстрируют вышесказанное.

Первое задание

Вычислить значение выражений:

а) √2 + 3√32 + ½ √128 — 6√18;

б) √75 — √147 + √48 — 1/5 √300;

в) √275 — 10√11 + 2√99 + √396.

а) Если следовать приведенному выше алгоритму, то видно, что для первых двух действий в этом примере ничего нет. Зато можно упростить некоторые подкоренные выражения.

Например, 32 разложить на два множителя 2 и 16; 18 будет равно произведению 9 и 2; 128 — это 2 на 64. Учитывая это, выражение будет записано так:

√2 + 3√(2 * 16) + ½ √(2 * 64) — 6 √(2 * 9).

Теперь нужно вынести из-под знака радикала те множители, которые дают квадрат числа. Это 16=4 2 , 9=3 2 , 64=8 2 . Выражение примет вид:

√2 + 3 * 4√2 + ½ * 8 √2 — 6 * 3√2.

Нужно немного упростить запись. Для этого производится умножение коэффициентов перед знаками корня:

√2 + 12√2 + 4 √2 — 12√2.

В этом выражении все слагаемые оказались подобными. Поэтому их нужно просто сложить. В ответе получится: 5√2.

б) Подобно предыдущему примеру, сложение корней начинается с их упрощения. Подкоренные выражения 75, 147, 48 и 300 будут представлены такими парами: 5 и 25, 3 и 49, 3 и 16, 3 и 100. В каждой из них имеется число, которое можно вынести из-под знака корня:

5√5 — 7√3 + 4√3 — 1/5 * 10√3.

После упрощения получается ответ: 5√5 — 5√3. Его можно оставить в таком виде, но лучше вынести общий множитель 5 за скобку: 5 (√5 — √3).

в) И снова разложение на множители: 275 = 11 * 25, 99 = 11 * 9, 396 = 11 * 36. После вынесения множителей из-под знака корня имеем:

5√11 — 10√11 + 2 * 3√11 + 6√11. После приведения подобных слагаемых получим результат: 7√11.

Пример с дробными выражениями

√(45/4) — √20 — 5√(1/18) — 1/6 √245 + √(49/2).

На множители нужно будет разложить такие числа: 45 = 5 * 9, 20 = 4 * 5, 18 = 2 * 9, 245 = 5 * 49. Аналогично уже рассмотренным, нужно вынести множители из-под знака корня и упростить выражение:

3/2 √5 — 2√5 — 5/ 3 √(½) — 7/6 √5 + 7 √(½) = (3/2 — 2 — 7/6) √5 — (5/3 — 7) √(½) = — 5/3 √5 + 16/3 √(½).

Это выражение требует того, чтобы избавиться от иррациональности в знаменателе. Для этого нужно умножить на √2/√2 второе слагаемое:

5/3 √5 + 16/3 √(½) * √2/√2 = — 5/3 √5 + 8/3 √2.

Для полноты действий нужно выделить целую часть у множителей перед корнями. У первого она равна 1, у второго — 2.

Квадратным корнем из числа X
называется число A
, которое в процессе умножения самого на себя (A * A
) может дать число X
.
Т.е. A * A = A 2 = X
, и √X = A
.

Над квадратными корнями (√x
), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y

).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9
. Первое число 4
является квадратом числа 2
. Второе число 9
является квадратом числа 3
. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5
.
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54
.

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3
,
54 = 2 * 3 * 3 * 3
.

В числе 24
мы имеем множитель 4
, его можно вынести из-под знака квадратного корня. В числе 54
мы имеем множитель 9
.

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6
.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней — это знаменатель дроби, например, A / (√a + √b)
.
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b
.

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a — b
.

Аналогично, если в знаменателе имеется разность корней: √a — √b
, числитель и знаменатель дроби умножаем на выражение √a + √b
.

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3)
.

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5)
.
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5
.

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5
.

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89
.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней
, каковы свойства корней
, и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями
— это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да…

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень.2=400\\
\hline \end{array}\]

Факт 3.

Какие действия можно выполнять с квадратными корнями?
\(\bullet\)
Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть
\[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\]
Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\)
, то первоначально вы должны найти значения \(\sqrt{25}\)
и \(\sqrt{49}\)
, а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\]
Если значения \(\sqrt a\)
или \(\sqrt b\)
при сложении \(\sqrt
a+\sqrt b\)
найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt
2+ \sqrt {49}\)
мы можем найти \(\sqrt{49}\)
– это \(7\)
, а вот \(\sqrt
2\)
никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt
2+7\)
. Дальше это выражение, к сожалению, упростить никак нельзя

\(\bullet\)
Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad
\sqrt a:\sqrt b=\sqrt{a:b}\]
(при условии, что обе части равенств имеют смысл
)
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot
2}=\sqrt{64}=8\)
;
\(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\)
;
\(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}=
5\cdot 8=40\)
.
\(\bullet\)
Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\)
. Так как \(44100:100=441\)
, то \(44100=100\cdot 441\)
. По признаку делимости число \(441\)
делится на \(9\)
(так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\)
, то есть \(441=9\cdot 49\)
.
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}=
\sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\]
Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}=
\sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{
\dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot
\sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]

\(\bullet\)
Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\)
(сокращенная запись от выражения \(5\cdot
\sqrt2\)
). Так как \(5=\sqrt{25}\)
, то \
Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\)
,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)

3) \(\sqrt a+\sqrt a=2\sqrt a\)
.2\)
, поэтому \(\sqrt{16}=4\)
. А вот извлечь корень из числа \(3\)
, то есть найти \(\sqrt3\)
, нельзя, потому что нет такого числа, которое в квадрате даст \(3\)
.
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\)
и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\)
(число “пи”, приблизительно равное \(3,14\)
), \(e\)
(это число называют числом Эйлера, приблизительно оно равно \(2,7\)
) и т.д.
\(\bullet\)
Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел.
Обозначается это множество буквой \(\mathbb{R}\)
.
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.

\(\bullet\)
Модуль вещественного числа \(a\)
– это неотрицательное число \(|a|\)
, равное расстоянию от точки \(a\)
до \(0\)
на вещественной прямой.2\\
&2>2,25 \end{aligned}\]
Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!

Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3
\(\bullet\)
Следует запомнить, что \[\begin{aligned}
&\sqrt 2\approx 1,4\\
&\sqrt 3\approx 1,7 \end{aligned}\]
Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
\(\bullet\)
Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа.2=168\cdot 168=28224\)
.
Следовательно, \(\sqrt{28224}=168\)
. Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор
    . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект
    . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Содержимое:

Складывать и вычитать квадратные корни можно только при условии, что у них одинаковое подкоренное выражение, то есть вы можете сложить или вычесть 2√3 и 4√3, но не 2√3 и 2√5. Вы можете упростить подкоренное выражение, чтобы привести их к корням с одинаковыми подкоренными выражениями (а затем сложить или вычесть их).

Шаги

Часть 1
Постигаем основы

  1. 1
    (выражение под знаком корня).
    Для этого разложите подкоренное число на два множителя, один из которых является квадратным числом (число, из которого можно извлечь целый корень, например, 25 или 9). После этого извлеките корень из квадратного числа и запишите найденное значение перед знаком корня (под знаком корня останется второй множитель). Например, 6√50 — 2√8 + 5√12. Числа, стоящее перед знаком корня, являются множителями соответствующих корней, а числа под знаком корня – это подкоренные числа (выражения). Вот как решать данную задачу:

    • 6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Здесь вы раскладываете 50 на множители 25 и 2; затем из 25 извлекаете корень, равный 5, и 5 выносите из-под корня. Затем 5 умножаете на 6 (множитель у корня) и получаете 30√2.
    • 2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. Здесь вы раскладываете 8 на множители 4 и 2; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 2 (множитель у корня) и получаете 4√2.
    • 5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Здесь вы раскладываете 12 на множители 4 и 3; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 5 (множитель у корня) и получаете 10√3.
  2. 2
    Подчеркните корни, подкоренные выражения которых одинаковы.
    В нашем примере упрощенное выражение имеет вид: 30√2 — 4√2 + 10√3. В нем вы должны подчеркнуть первый и второй члены (30√2
    и 4√2
    ), так как у них одинаковое подкоренное число 2. Только такие корни вы можете складывать и вычитать.
  3. 3
    Если вам дано выражение с большим количеством членов, многие из которых имеют одинаковые подкоренные выражения, используйте одинарное, двойное, тройное подчеркивание для обозначения таких членов, чтобы облегчить решение этого выражения.
  4. 4
    У корней, подкоренные выражения которых одинаковы, сложите или вычтите множители, стоящие перед знаком корня, а подкоренное выражение оставьте прежним (не складывайте и не вычитайте подкоренные числа!
    ). Идея в том, чтобы показать, сколько всего корней с определенным подкоренным выражением содержится в данном выражении.

    • 30√2 — 4√2 + 10√3
      =
    • (30 — 4)√2 + 10√3
      =
    • 26√2 + 10√3

Часть 2
Практикуемся на примерах

  1. 1
    Пример 1:
    √(45) + 4√5.

    • Упростите √(45). Разложите 45 на множители: √(45) = √(9 x 5).
    • Вынесите 3 из-под корня (√9 = 3): √(45) = 3√5.
    • Теперь сложите множители у корней: 3√5 + 4√5 = 7√5
  2. 2
    Пример 2:
    6√(40) — 3√(10) + √5.

    • Упростите 6√(40). Разложите 40 на множители: 6√(40) = 6√(4 x 10).
    • Вынесите 2 из-под корня (√4 = 2): 6√(40) = 6√(4 x 10) = (6 x 2)√10.
    • Перемножьте множители перед корнем и получите 12√10.
    • Теперь выражение можно записать в виде 12√10 — 3√(10) + √5. Так как у первых двух членов одинаковые подкоренные числа, вы можете вычесть второй член из первого, а первый оставить без изменений.
    • Вы получите: (12-3)√10 + √5 = 9√10 + √5.
  3. 3
    Пример 3.
    9√5 -2√3 — 4√5. Здесь ни одно из подкоренных выражений нельзя разложить на множители, поэтому упростить это выражение не получится. Вы можете вычесть третий член из первого (так как у них одинаковые подкоренные числа), а второй член оставить без изменений. Вы получите: (9-4)√5 -2√3 = 5√5 — 2√3.
  4. 4
    Пример 4.
    √9 + √4 — 3√2.

    • √9 = √(3 х 3) = 3.
    • √4 = √(2 х 2) = 2.
    • Теперь вы можете просто сложить 3 + 2, чтобы получить 5.
    • Окончательный ответ: 5 — 3√2.
  5. 5
    Пример 5.
    Решите выражение, содержащее корни и дроби. Вы можете складывать и вычислять только те дроби, у которых общий (одинаковый) знаменатель. Дано выражение (√2)/4 + (√2)/2.

    • Найдите наименьший общий знаменатель этих дробей. Это число, которое делится нацело на каждый знаменатель. В нашем примере на 4 и на 2 делится число 4.
    • Теперь вторую дробь умножьте на 2/2 (чтобы привести ее к общему знаменателю; первая дробь уже приведена к нему): (√2)/2 х 2/2 = (2√2)/4.
    • Сложите числители дробей, а знаменатель оставьте прежним: (√2)/4 + (2√2)/4 = (3√2)/4 .
  • Перед суммированием или вычитанием корней обязательно упростите (если возможно) подкоренные выражения.

Предупреждения

  • Никогда не суммируйте и не вычитайте корни с разными подкоренными выражениями.
  • Никогда не суммируйте и не вычитайте целое число и корень, например, 3 + (2x) 1/2
    .

    • Примечание: «х» в одной второй степени и квадратный корень из «х» – это одно и то же (то есть x 1/2 = √х).

Корень и его свойства | ПОЛЕЗНЫЕ ПРОГРАММЫ ДЛЯ УЧЕБЫ И РАБОТЫ

Тема в математике «Корень и его свойства» нередко вызывает затруднения у школьников, особенно при решении примеров. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение «Корень»

 Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √64 = 8 (√64 равно числу 8).

Формула: a2 = a

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Извлечь корень — значит найти значение корня (то есть найти число, при возведении которого в степень, получается подкоренное значение).
Например, извлечь корень из 64 – значит найти √64.

Найти корень из числа можно одним из следующих способов:

  • Использование таблицы квадратов, таблицы кубов и т.д. В данном случае нужно просто найти нужное число в таблице и посмотреть, какому значению оно соответствует.
  • Разложение подкоренного выражения (числа) на простые множители.
    Порядок нахождения корня в этом случае будет следующим:
    1. Разложение подкоренного значения на простые множители,
    2. Объединение одинаковых множителей и их представление в виде степени с необходимым показателем.
    Например, √144 = √2х2х2х2х3х3 = √(2х2)х(2х2)х(3х3) = √22х22х32 = √122 = 12
    3. В случае, если невозможно найти корень из числа, то можно упростить подкоренное выражение (число). В этом случае применяется следующее правило: корень из произведения чисел равен произведению корней этих чисел.
    Например, √72 = √2х2х2х3х3 = √(2х2)х2х(3х3) = √22х2х32 = √62х2 = 6√2
  • Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.
    Например, √130=√13х5х2 – упростить нельзя.
  • Извлечение корня из дроби. В этом случае применяются следующие правила:
    1. дробное число должно быть записано в виде обыкновенной дроби;
    2. корень из дроби равен частному от деления корня числителя на корень знаменателя.
    Например, √3,24 = √324/100 = √81/25 = √81 / √25 = 9/5 = 1,8.
  • Извлечение нечетной степени из отрицательных чисел. Чтобы извлечь корень нечетной степени из отрицательного числа необходимо извлечь его из положительного числа и поставить перед ним знак минус.
    Например, чтобы найти корень третьей степени из (-125), нужно найти корень третьей степени из 125 (будет 5) и подставить знак минуса (будет -5).

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Для этого воспользуемся следующим свойством дроби: a = n√an.

Например, есть квадратный корень (второй степени √2 ) и кубический корень (третьей степени 3√3).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = n√an: √2 = 2√2 = 6√23 = 6√8; 3√3 = 6√32 = 6√9
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

Корень: сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения. 

Примеры:
2√3 + 3√3 = 5√3
2√3 + 2√4 – не выполняется.

При этом, нужно рассмотреть возможность упростить выражения.
Пример: 2√3 + 3√12 = 2√3 + 3√2х2х3 = 2√3 + 3√ 22х3 = 2√3 + 6√3 = 8√3.

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. 
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Корень: умножение

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
√a*b=√a*√b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
√2 х √3 = √6
√6 х √3 = √18 = √3х3х2 = 3√2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3
√2 х √5 = (3х1) √(2*5) = 3√10

4√2 х 3√3 = (3х4) √(2х3) = 12√6

Корень: деление

Основной правило деления —  подкоренные выражения делятся на подкоренные выражения, а множители на множители.
√a:b=√a:√b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой, но нельзя делить квадратный корень на корень кубической степени.
Пример. √21:√3=√21:3=√7

Деление квадратных корней с множителями

При делении корней с множителями нужно отдельно разделить множители и подкорневые выражения (числа). Подкорневые числа можно делить между собой только в том случае, если они имеют одинаковые степени. В случае отсутствия множителя, он равен единице.
Пример. 12√32 : 6√16 = (12:6) √(32:16) = 2√2.

Примеры для практики

Чтобы попрактиковаться решать примеры на вычисление квадратный корней, можно скачать программу «Корни квадратные«

 

Вычитание квадратного корня — стенограмма видео и урока

Вычитание с одинаковыми подкоренными элементами

Квадратный корень состоит из трех частей:

  1. Дробный индекс
  2. Радикальный или квадратный корень
  3. Коренное выражение, или число под радикальным символом

Для квадратных корней стандартная практика подразумевает, но не показывает индекс.

Чтобы вычесть квадратные корни, мы должны обращать внимание на их подкоренные выражения.Если подкоренные выражения совпадают, мы можем вычесть квадратные корни, комбинируя члены.

Здесь наш ответ представлен в виде числа, умноженного на квадратный корень. Это простейшая форма, которую может принять задача вычитания выборки, если мы ищем точный ответ.

Вычитание с использованием подкоренных выражений, отличных от подкоренных

Когда квадратные корни имеют отличные от подкоренных выражений, первым шагом является проверка, можно ли разложить на множители какие-либо подкоренные выражения.

При этом следите за идеальными квадратами. Полный квадрат — это любое число, полученное в результате умножения другого числа на само себя. Это означает, что мы можем упростить подкоренные выражения, извлекая квадратные корни из любого их точного квадратного множителя.

Как только квадратные корни уравнения имеют одинаковые подкоренные выражения, мы можем вычесть их таким же образом, как и в предыдущем разделе. Точный ответ для нашего уравнения уже есть в его простейшей форме.

Приближение и десятичные дроби

До сих пор мы работали только с целыми числами, набором чисел, состоящим из нуля и всех положительных целых чисел. При работе с десятичными знаками мы можем использовать калькулятор, чтобы получить приближение квадратного корня из неполных квадратных чисел.

Решение для квадратных корней позволяет использовать обычный порядок операций, как и в любой стандартной математической задаче.Даже решение проблемы в его простейшей форме может быть аппроксимировано десятичными знаками. Однако помните, что использование этого метода для вычитания квадратных корней всегда приводит к приближению, а не к точному ответу. Вот почему понимание правил вычитания квадратных корней, которые мы обсуждали ранее, по-прежнему важно.

Итоги урока

Давайте рассмотрим. Корень — это показатель степени в дробной форме. Квадратный корень состоит из трех частей:

  1. Дробный индекс, который обычно подразумевается
  2. Радикальный или квадратный корень
  3. Коренное выражение, или число под радикальным символом

При вычитании квадратных корней с одинаковыми подкоренными элементами объедините члены.При вычитании квадратных корней с непохожими подкоренными выражениями посмотрите, можно ли еще больше упростить подкоренное выражение, найдя его идеальный квадрат или любое число, полученное в результате умножения другого числа на себя. Если результатом является уравнение с такими же подкоренными выражениями, вычтите, снова комбинируя члены. При отсутствии подобных подкоренных выражений вычитание не приведет к точному ответу. Если ответ на задачу вычитания с использованием квадратных корней дает приблизительный, а не точный ответ, используйте калькулятор, чтобы найти приблизительное значение квадратных корней.Затем используйте обычный порядок действий для решения проблемы.

Сложение и вычитание радикалов (квадратные корни)

Purplemath

Так же, как и «обычные» числа, квадратные корни можно складывать. Но возможно, вам не удастся упростить сложение до одного числа. Как «нельзя добавлять яблоки и апельсины», так и нельзя комбинировать «непохожие» радикальные термины.Чтобы можно было объединить радикальные термины вместе, эти термины должны иметь одну и ту же радикальную часть.

  • Упростить:

Поскольку радикал в каждом члене один и тот же (является квадратным корнем из трех), то это «одинаковые» термины. Это означает, что я могу комбинировать термины.

MathHelp.com

У меня есть два радикальных экземпляра, добавлены еще три экземпляра. Всего получается пять копий:

Этот средний шаг в круглых скобках показывает рассуждение, которое оправдывает окончательный ответ.Возможно, вам никогда не понадобится «показывать» этот шаг, но это то, о чем вы должны думать.


  • Упростить:

Коренная часть одинакова во всех терминах, поэтому я могу добавить это дополнение. Чтобы помочь мне понять, что первый термин означает «одну копию квадратного корня из трех», я вставлю «понял» «1»:


Не думайте, что выражения с непохожими радикалами нельзя упростить.Возможно, что после упрощения радикалов выражение действительно может быть упрощено.

  • Упростить:

Чтобы упростить радикальное сложение, я должен сначала посмотреть, могу ли я упростить каждый радикальный термин. В данном конкретном случае квадратные корни упрощаются «полностью» (то есть до целых чисел):


  • Упростить:

У меня есть три копии радикала плюс еще две копии, что дает мне… Погодите! Я могу упростить эти радикалы до целых чисел:

Не волнуйтесь, если вы не сразу увидите упрощение.Если бы я до конца не заметил, что радикальное упрощение, мои шаги были бы другими, но мой окончательный ответ был бы таким же:


  • Упростить:

Могу объединить только радикалы «лайки». Первый и последний члены содержат квадратный корень из трех, поэтому их можно комбинировать; средний член содержит квадратный корень из пяти, поэтому его нельзя комбинировать с другими.Итак, в этом случае я получу два термина в своем ответе.

Я начну с перестановки терминов, чтобы соединить «похожие» термины вместе, и вставив «понятый» 1 во второй член квадратного корня из трех:


Насколько мне известно, нет предпочтительного упорядочивания терминов в такого рода выражениях, поэтому выражение

также должно быть приемлемым ответом.


  • Упростить:

Насколько мне известно, это «непохожие» термины, и я не могу их объединить.Но восьмерка в радикале первого члена множится как 2 × 2 × 2. Это означает, что я могу вытащить 2 из радикала. В этот момент у меня будут термины «нравится», которые я могу комбинировать.


  • Упростить:

Я могу упростить большинство радикалов, и это позволит хотя бы немного упростить:


  • Упростить:

Эти два термина имеют «непохожие» радикальные части, и я не могу вынести ничего из любого из радикалов.Тогда я не могу дальше упрощать выражение

, и мой ответ должен быть таким:

(выражение уже полностью упрощено)


  • Развернуть:

Чтобы расширить это выражение (то есть умножить его, а затем упростить), мне сначала нужно взять квадратный корень из двух через круглые скобки:


Как видите, упрощение включало превращение продукта радикалов в один радикал, содержащий значение продукта (2 × 3 = 6).Вы должны ожидать, что вам придется манипулировать радикальными продуктами в обоих «направлениях».


  • Развернуть:

Как и в предыдущем примере, мне нужно умножить через круглые скобки.


  • Развернуть:

Наверное, проще будет это умножение «по вертикали».

Упрощение дает мне:


Выполняя вертикальное умножение, я мог лучше отслеживать свои шаги. Вы должны использовать тот метод умножения, который вам больше подходит. Но знайте, что вертикальное умножение — это не временная уловка для начинающих студентов; Я до сих пор использую эту технику, потому что обнаружил, что при этом я постоянно быстрее и точнее.


Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в нахождении радикалов. Попробуйте выполнить указанное упражнение или введите свое собственное. Затем нажмите кнопку, чтобы сравнить свой ответ с ответом Mathway.

(Нажмите «Нажмите, чтобы просмотреть шаги», чтобы перейти непосредственно на сайт Mathway для платного обновления.)



URL: https: // www.purplemath.com/modules/radicals3.htm

Сложение и вычитание квадратного корня

Мы можем складывать или вычитать радикальные выражения только тогда, когда они имеют одно и то же подкоренное выражение и когда они имеют один и тот же радикальный тип, например квадратные корни. Например, сумма [latex] \ sqrt {2} [/ latex] и [latex] 3 \ sqrt {2} [/ latex] равна [latex] 4 \ sqrt {2} [/ latex]. Однако часто можно упростить радикальные выражения, и это может изменить подкоренное выражение.Радикальное выражение [latex] \ sqrt {18} [/ latex] может быть записано с помощью [latex] 2 [/ latex] в подкоренном выражении, как [latex] 3 \ sqrt {2} [/ latex], поэтому [latex ] \ sqrt {2} + \ sqrt {18} = \ sqrt {2} +3 \ sqrt {2} = 4 \ sqrt {2} [/ latex].

Практическое руководство. Решите радикальное выражение, требующее сложения или вычитания квадратных корней.

  1. Упростите каждое радикальное выражение.
  2. Сложить или вычесть выражения с одинаковыми подкоренными выражениями.

Пример 6: Добавление квадратного корня

Добавьте [латекс] 5 \ sqrt {12} +2 \ sqrt {3} \\ [/ latex].

Решение

Мы можем переписать [latex] 5 \ sqrt {12} [/ latex] как [latex] 5 \ sqrt {4 \ cdot 3} [/ latex]. Согласно правилу продукта это становится [латекс] 5 \ sqrt {4} \ sqrt {3} [/ latex]. Квадратный корень из [latex] \ sqrt {4} [/ latex] равен 2, поэтому выражение становится [latex] 5 \ left (2 \ right) \ sqrt {3} [/ latex], то есть [latex] 10. \ sqrt {3} [/ латекс]. Теперь у терминов может быть одно и то же подкоренное выражение, поэтому мы можем добавить.

[латекс] 10 \ sqrt {3} +2 \ sqrt {3} = 12 \ sqrt {3} [/ латекс]

Попробуй 6

Добавьте [латекс] \ sqrt {5} +6 \ sqrt {20} [/ latex].{2} \ sqrt {2ac} \ text {} [/ latex]

Попробуй 7

Вычтите [латекс] 3 \ sqrt {80x} -4 \ sqrt {45x} [/ latex].

Решение

Как вычесть квадратные корни

Explanation:

Самым сложным элементом этой задачи является умение правильно упростить каждый квадратный корень. Это означает, что мы начнем с нашего первого участника,. Существует несколько различных методов упрощения квадратного корня, каждый из которых имеет свои преимущества. Кроме того, некоторые калькуляторы, допустимые для ACT, действительно могут сделать это за вас (возможно, стоит изучить).Но для тех из нас, кому не повезло, вот один конкретный метод, который использует то, что называется факторным деревом.

Начните с записи числа внутри квадратного корня, в нашем случае 45. И найдите два множителя (числа, умноженные на которые равны) 45, кроме 1, и само число. В нашем случае есть две возможности: 9 и 5 или 3 и 15. Оба будут работать, но мы выберем последнюю пару. Посмотрите на каждый из двух факторов, чтобы увидеть, можно ли повторить один и тот же процесс. Глядя на 3, мы понимаем, что это простое число, то есть никаких дополнительных факторов не существует.Поэтому оставим 3 как есть. Тем не менее, 15 можно далее разбить на факторы 5 и 3, что мы можем проиллюстрировать, как показано. Затем мы пытаемся повторить процесс со следующим уровнем чисел, но вскоре понимаем, что и 5, и 3 простые. Таким образом, мы не можем идти дальше, и наше дерево факторов готово.

Но что нам теперь делать? Ищем пары. Для каждой пары чисел, стоящих под корнем, мы помещаем одно число снаружи квадратного корня. Это означает, что одна тройка выходит за пределы квадратного корня.Для каждого числа под корнем без пары мы помещаем это число в квадратный корень, что означает, что одна 5 входит в квадратный корень. Это дает окончательный ответ.

Затем мы повторяем процесс со вторым участником. Факторное дерево для 180 может иметь несколько разных путей, но любой правильный путь (включая приведенный ниже пример) должен заканчиваться теми же числами под корнем. Цифры под радикалом, возможно, не в том же порядке, должны включать две двойки, две тройки и одну пятерку.Мы видим, что пара двоек и пара троек должны дать нам одну двойку и одну тройку на внешней стороне квадратного корня, а непарную пятерку — на внутренней стороне. Каждый раз, когда несколько чисел оказываются внутри или снаружи, мы просто умножаем эти числа.

Следовательно, получаем.

Затем мы завершаем процесс еще раз с нашим последним участником, 125. Это неизменно дает следующее дерево факторов.

Проблема в том, что у нас есть не пара, а тройка пятерок. В этом случае мы просто объединяем два из них в пару, оставляя одну из пяти нечетных.

Тогда наш окончательный ответ для этого участника.

Подставив наши упрощенные квадратные корни вместо оригиналов, мы получим новое выражение

. Отсюда лучше всего думать о яблоке. В первом триместре у меня 3 «яблока». Затем я вычитаю или убираю 6 «яблок». Наконец, добавляю обратно 5 «яблок».Сколько у меня яблок?

. У меня 2 яблока, или другими словами.

Сложение и вычитание квадратного корня — элементарная алгебра

Цели обучения

К концу этого раздела вы сможете:

  • Сложить и вычесть как квадратные корни
  • Сложить и вычесть квадратные корни, требующие упрощения

Перед тем, как начать, пройдите тест на готовность.

  1. Добавь: ⓐ ⓑ.
    Если вы пропустили эту проблему, просмотрите (рисунок).
  2. Упростить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).

Мы знаем, что для упрощения выражений с квадратными корнями необходимо соблюдать порядок операций. Радикал — это групповой символ, поэтому сначала мы работаем внутри радикала. Упрощаем таким образом:

Итак, если нам нужно складывать, мы не должны объединять их в один радикал.

Попытка сложить квадратные корни с разными подкоренными выражениями похожа на попытку сложить непохожие термины.

Сложение квадратных корней с одним и тем же корневым выражением аналогично сложению одинаковых членов.Мы называем квадратные корни с одним корнем корня квадратными корнями, чтобы напомнить нам, что они работают так же, как и подобные термины.

Как квадратные корни

Квадратные корни с одной и той же подкоренной частью называются квадратными корнями.

Мы складываем и вычитаем как квадратные корни так же, как складываем и вычитаем как члены. Мы это знаем. Аналогично складываем и получаем

Сложение и вычитание, как квадратные корни

Подумайте о добавлении одинаковых терминов с переменными, как в следующих нескольких примерах.Когда у вас есть подкоренные выражения, вы просто добавляете или вычитаете коэффициенты. Когда подкоренные выражения не похожи, вы не можете комбинировать термины.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Когда радикалы содержат более одной переменной, при условии, что все переменные и их показатели идентичны, радикалы подобны.

Упростить:.

Решение

Упростить:.

Упростить:.

Сложение и вычитание квадратного корня, требующего упрощения

Помните, что мы всегда упрощаем квадратные корни, удаляя наибольший коэффициент полного квадрата.Иногда, когда нам нужно сложить или вычесть квадратные корни, которые не имеют одинаковых радикалов, мы находим похожие радикалы после упрощения квадратных корней.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Точно так же, как мы используем ассоциативное свойство умножения для упрощения и получения, мы можем упрощать и получать.В следующем примере мы воспользуемся ассоциативным свойством.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

В следующем примере мы удалим постоянные и переменные множители из квадратных корней.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Упростить:.

Решение

Упростить:.

Упростить:.

Ключевые понятия

  • Чтобы сложить или вычесть квадратные корни, сложите или вычтите коэффициенты и сохраните такой же квадратный корень.
  • Иногда, когда нам нужно сложить или вычесть квадратные корни, которые не имеют одинаковых радикалов, мы находим похожие радикалы после упрощения квадратных корней.
Практика ведет к совершенству

Сложить и вычесть как квадратные корни

Упростите следующие упражнения.

Сложить и вычесть квадратные корни, требующие упрощения

Упростите следующие упражнения.

Смешанная практика

Повседневная математика

Декоратор решает использовать квадратную плитку в качестве акцентной полосы в дизайне новой душевой кабины, но она хочет повернуть плитки, чтобы они выглядели как ромбы.Она будет использовать 9 больших плиток со стороной 8 дюймов и 8 маленьких плиток со стороной 2 дюйма. . Определите ширину акцентной полосы, упростив выражение. (Округлите до ближайшей десятой доли дюйма.)

Сюзи хочет использовать квадратные плитки на границе спа, которое она устанавливает на заднем дворе. Она будет использовать большие плитки с площадью 12 квадратных дюймов, средние плитки с площадью 8 квадратных дюймов и маленькие плитки с площадью 4 квадратных дюйма.После того, как участок границы потребует 4 больших плитки, 8 средних плиток и 10 маленьких плиток, чтобы покрыть ширину стены. Упростите выражение, чтобы определить ширину стены.

Письменные упражнения

Объясните разницу между одинаковыми радикалами и непохожими радикалами. Убедитесь, что ваш ответ имеет смысл для радикалов, содержащих как числа, так и переменные.

Объясните процесс определения того, похожи ли два радикала или нет. Убедитесь, что ваш ответ имеет смысл для радикалов, содержащих как числа, так и переменные.

Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

ⓑ Что этот контрольный список говорит вам о вашем мастерстве в этом разделе? Какие шаги вы предпримете для улучшения?

Глоссарий

как квадратные корни
Квадратные корни с той же подкоренной частью называются квадратными корнями.

Операции с квадратным корнем

Операции с квадратными корнями

Вы можете выполнять ряд различных операций с квадратными корнями.Некоторые из этих операций включают один радикальный знак, в то время как другие могут включать множество радикальных знаков. Следует внимательно изучить правила, регулирующие эти операции.

Под одинарным знаком корня

Операции можно выполнять под одинарным знаком корня .

Пример 1

Выполните указанную операцию.

При совпадении радикальных ценностей

Вы можете складывать или вычитать сами квадратные корни, только если значения под знаком корня равны. Затем просто сложите или вычтите коэффициенты (числа перед знаком корня) и сохраните исходное число в знаке корня.

Пример 2

Выполните указанную операцию.

Обратите внимание, что коэффициент 1 понимается в.

При других значениях корня

Вы не можете складывать или вычитать разные квадратные корни.

Пример 3
Сложение и вычитание квадратных корней после упрощения

Иногда после упрощения квадратного корня (ов) становится возможным сложение или вычитание.По возможности всегда упрощайте.

Пример 4

Упростить и добавить.

  1. Не могут быть добавлены, пока не будет упрощено.

    Теперь, поскольку под знаком корня оба похожи,

  2. Попытайтесь упростить каждое из них.

    Теперь, поскольку под знаком корня оба похожи,

Продукция неотрицательных корней

Помните, что при умножении корней знак умножения можно опустить.По возможности всегда упрощайте ответ.

Пример 5

Умножить.

  1. Если каждая переменная неотрицательна,

  2. Если каждая переменная неотрицательна,

  3. Если каждая переменная неотрицательна,

Частные неотрицательные корни

Для всех положительных чисел

В следующих примерах предполагается, что все переменные положительны.

Пример 6

Разделить. Оставьте все дроби с рациональными знаменателями.

Обратите внимание, что знаменатель этой дроби в части (d) является иррациональным. Чтобы рационализировать знаменатель этой дроби, умножьте его на 1 в виде

.

Пример 7

Разделить. Оставьте все дроби с рациональными знаменателями.

  1. Первое упрощение:

    или

Примечание: Чтобы оставить рациональный член в знаменателе, необходимо умножить числитель и знаменатель на , сопряженное с знаменателя. Сопряжение двучлена содержит те же члены, но с противоположным знаком. Таким образом, ( x + y ) и ( x y ) являются конъюгатами.

Пример 8

Разделить. Оставьте дробь с рациональным знаменателем.

9.3 Сложение и вычитание квадратного корня — элементарная алгебра 2e

Задачи обучения

К концу этого раздела вы сможете:

  • Сложить и вычесть как квадратные корни
  • Сложить и вычесть квадратные корни, требующие упрощения

Будьте готовы 9,7

Перед тем, как начать, пройдите тест на готовность.

Добавить: ⓐ 3x + 9x3x + 9x ⓑ 5m + 5n5m + 5n.
Если вы пропустили эту проблему, просмотрите Пример 1.24.

Будьте готовы 9,8

Упростить: 50x350x3.
Если вы пропустили эту проблему, просмотрите Пример 9.16.

Мы знаем, что для упрощения выражений с квадратными корнями необходимо соблюдать порядок операций. Радикал — это групповой символ, поэтому сначала мы работаем внутри радикала. Упростим 2 + 72 + 7 следующим образом:

2 + 7 сложить внутри корня. 9 упростить 32 + 7 сложить внутри корня.9 Упростить.3

Итак, если нам нужно сложить 2 + 72 + 7, мы не должны объединять их в один радикал.

Попытка сложить квадратные корни с разными подкоренными выражениями похожа на попытку сложить непохожие термины.

Но, точно так же, как мы можем сложить x + x, мы можем добавить 3 + 3.x + x = 2×3 + 3 = 23 Но, так же, как мы можем добавить x + x, мы можем добавить 3 + 3.x + x = 2×3 + 3 = 23

Сложение квадратных корней с одним и тем же корневым выражением аналогично сложению одинаковых членов. Мы называем квадратные корни с одним корнем корня квадратными корнями, чтобы напомнить нам, что они работают так же, как и подобные термины.

Как квадратные корни

Квадратные корни с одной и той же подкоренной частью называются квадратными корнями.

Мы складываем и вычитаем как квадратные корни так же, как складываем и вычитаем как члены. Мы знаем, что 3x + 8x3x + 8x равно 11x11x. Аналогично складываем 3x + 8x3x + 8x и получаем 11x.11x.

Сложение и вычитание, как квадратные корни

Подумайте о добавлении одинаковых терминов с переменными, как в следующих нескольких примерах. Когда у вас есть подкоренные выражения, вы просто добавляете или вычитаете коэффициенты.Когда подкоренные выражения не похожи, вы не можете комбинировать термины.

Пример 9.29

Упростить: 22-7222-72.

Решение
22-7222-72
Так как радикалы похожи, вычитаем коэффициенты. −52−52

Попробуйте 9,57

Упростить: 82-9282-92.

Попробуйте 9,58

Упростить: 53−9353−93.

Пример 9.30

Решение
3 года + 4 года 3 года + 4 года
Так как радикалы вроде бы складываем коэффициенты. 7y7y

Пример 9.31

Упростить: 4x − 2y4x − 2y.

Решение
4x − 2y4x − 2y
Так как радикалы не похожи, мы не можем
вычесть их. Оставляем выражение как есть.
4x − 2y4x − 2y

Попробуйте 9.61

Упростить: 7p − 6q7p − 6q.

Попробуйте 9,62

Упростить: 6a − 3b6a − 3b.

Пример 9.32

Упростить: 513 + 413 + 213513 + 413 + 213.

Решение
513 + 413 + 213513 + 413 + 213
Так как радикалы вроде бы складываем коэффициенты. 11131113

Попробуй 9.63

Упростить: 411 + 211 + 311411 + 211 + 311.

Попробуйте 9,64

Упростить: 610 + 210 + 310610 + 210 + 310.

Пример 9.33

Упростить: 26−66 + 3326−66 + 33.

Решение
26-66 + 3326-66 + 33
Поскольку первые два радикала похожи, мы
вычитаем их коэффициенты.
−46 + 33−46 + 33

Попробуйте 9,65

Упростить: 55-45 + 2655-45 + 26.

Попробуйте 9,66

Упростить: 37−87 + 2537−87 + 25.

Пример 9.34

Упростить: 25n − 65n + 45n25n − 65n + 45n.

Решение
25n − 65n + 45n25n − 65n + 45n
Так как радикалы похожие, объединяем их. 05n05n
Упростить. 0

Попробуйте 9,67

Упростить: 7x − 77x + 47x7x − 77x + 47x.

Попробуйте 9,68

Упростить: 43y − 73y + 23y43y − 73y + 23y.

Когда радикалы содержат более одной переменной, при условии, что все переменные и их показатели идентичны, радикалы подобны.

Пример 9.35

Упростить: 3xy + 53xy − 43xy3xy + 53xy − 43xy.

Решение
3xy + 53xy − 43xy3xy + 53xy − 43xy
Так как радикалы похожие, объединяем их. 23xy23xy

Попробуй 9.69

Упростить: 5xy + 45xy − 75xy5xy + 45xy − 75xy.

Попробуйте 9,70

Упростить: 37 млн ​​+ 7 млн ​​− 47 млн37 млн ​​+ 7 млн ​​− 47 млн.

Сложение и вычитание квадратного корня, требующего упрощения

Помните, что мы всегда упрощаем квадратные корни, удаляя наибольший коэффициент полного квадрата. Иногда, когда нам нужно сложить или вычесть квадратные корни, которые не имеют одинаковых радикалов, мы находим похожие радикалы после упрощения квадратных корней.

Пример 9.36

Решение
20 + 3520 + 35
По возможности упрощайте радикалы. 4 · 5 + 354 · 5 + 35
25 + 3525 + 35
Объедините одинаковые радикалы. 5555

Пример 9.37

Упростить: 48-7548-75.

Решение
48-7548-75
Упростим радикалы. 16 · 3−25 · 316 · 3−25 · 3
43-5343-53
Объедините одинаковые радикалы. −3−3

Попробуйте 9,73

Упростить: 32-1832-18.

Попробуйте 9,74

Упростить: 20-4520-45.

Так же, как мы используем ассоциативное свойство умножения, чтобы упростить 5 (3x) 5 (3x) и получить 15x15x, мы можем упростить 5 (3x) 5 (3x) и получить 15x15x. В следующем примере мы воспользуемся ассоциативным свойством.

Пример 9.38

Упростить: 518-28518-28.

Решение
518−28518−28
Упростим радикалы. 5 · 9 · 2−2 · 4 · 25 · 9 · 2−2 · 4 · 2
5 · 3 · 2−2 · 2 · 25 · 3 · 2−2 · 2 · 2
152-42152-42
Объедините одинаковые радикалы. 112112

Попробуйте 9,75

Упростить: 427-312427-312.

Попробуйте 9,76

Упростить: 320-745320-745.

Пример 9.39

Упростить: 34192−5610834192−56108.

Решение
34192−5610834192−56108
Упростим радикалы. 3464 · 3−5636 · 33464 · 3−5636 · 3
34 · 8 · 3−56 · 6 · 334 · 8 · 3−56 · 6 · 3
63-5363-53
Объедините одинаковые радикалы. 33

Попробуйте 9,77

Упростить: 23108−5714723108−57147.

Попробуйте 9,78

Упростить: 35200–3412835200–34128.

Пример 9,40

Упростить: 2348-34122348-3412.

Решение
2348-34122348-3412
Упростим радикалы. 2316 · 3-344 · 32316 · 3-344 · 3
23 · 4 · 3-34 · 2 · 323 · 4 · 3-34 · 2 · 3
833-323833-323
Найдите общий знаменатель, чтобы вычесть коэффициенты
при одинаковых радикалах.
1663−9631663−963
Упростить. 763763

Попробуйте 9,79

Упростить: 2532−1382532−138.

Попробуйте 9.80

Упростить: 1380-141251380-14125.

В следующем примере мы удалим постоянные и переменные множители из квадратных корней.

Пример 9.41

Упростить: 18n5-32n518n5-32n5.

Решение
18н5-32н518н5-32н5
Упростим радикалы. 9n4 · 2n − 16n4 · 2n9n4 · 2n − 16n4 · 2n
3n22n − 4n22n3n22n − 4n22n
Объедините одинаковые радикалы. −n22n − n22n

Попробуйте 9,81

Упростить: 32m7−50m732m7−50m7.

Попробуйте 9,82

Упростить: 27п3-48п327п3-48п3.

Пример 9.42

Упростить: 950м2−648м2950м2−648м2.

Решение
950м2−648м2950м2−648м2
Упростим радикалы. 925м2 · 2-616м2 · 3925м2 · 2-616м2 · 3
9 · 5м · 2-6 · 4м · 39 · 5м · 2-6 · 4м · 3
45м2-24м 345м2-24м3
Радикалы не похожи и поэтому не сочетаются.

Попробуйте 9,83

Упростить: 532×2−348x2532x2−348×2.

Попробуйте 9,84

Упростить: 748y2−472y2748y2−472y2.

Пример 9.43

Упростить: 28×2−5×32 + 518x228x2−5×32 + 518×2.

Решение
28×2−5×32 + 518x228x2−5×32 + 518×2
Упростим радикалы. 24×2 · 2−5×16 · 2 + 59×2 · 224×2 · 2−5×16 · 2 + 59×2 · 2
2 · 2x · 2−5x · 4 · 2 + 5 · 3x · 22 · 2x · 2−5x · 4 · 2 + 5 · 3x · 2
4×2−20×2 + 15x24x2−20×2 + 15×2
Объедините одинаковые радикалы. −x2 − x2

Попробуйте 9,85

Упростить: 312×2−2×48 + 427x2312x2−2×48 + 427×2.

Попробуйте 9,86

Упростить: 318×2−6×32 + 250x2318x2−6×32 + 250×2.

Раздел 9.3. Упражнения

Практика ведет к совершенству

Сложить и вычесть как квадратные корни

Упростите следующие упражнения.

163.

311 + 211-811311 + 211-811

164.

215 + 515-

5 + 515-915

169.

32a − 42a + 52a32a − 42a + 52a

170.

11b − 511b + 311b11b − 511b + 311b

171.

83c + 23c − 93c83c + 23c − 93c

172.

35d + 85d − 115d35d + 85d − 115d

173.

53ab + 3ab − 23ab53ab + 3ab − 23ab

174.

811cd + 511cd − 911cd811cd + 511cd − 911cd

175.

2pq − 5pq + 4pq2pq − 5pq + 4pq

176.

112рс − 92рс + 32рс112рс − 92рс + 32рс

Сложить и вычесть квадратные корни, требующие упрощения

Упростите следующие упражнения.

201.

980п4-698п4980п4-698п4

202.

872q6−375q6872q6−375q6

205.

320×2−445×2 + 5x80320x2−445×2 + 5×80

206.

228×2−63×2 + 6x7228x2−63×2 + 6×7

207.

3128y2 + 4y162−898y23128y2 + 4y162−898y2

208.

375y2 + 8y48−300y2375y2 + 8y48−300y2

Смешанная практика

217.

813−413−313813−413−313

218.

512c4-327c6512c4-327c6

227.

424×2−54×2 + 3x6424x2−54×2 + 3×6

228.

880y6−648y6880y6−648y6

Повседневная математика

229.

Декоратор решает использовать квадратную плитку в качестве акцентной полосы в дизайне новой душевой кабины, но она хочет повернуть плитки, чтобы они выглядели как ромбы. Она будет использовать 9 больших плиток со стороной 8 дюймов и 8 маленьких плиток со стороной 2 дюйма. Определите ширину акцентной полосы, упростив выражение 9 (82) +8 (22) 9 (82) +8 (22). (Округлите до ближайшей десятой доли дюйма.)

230.

Сюзи хочет использовать квадратные плитки на границе спа, которое она устанавливает на заднем дворе. Она будет использовать большие плитки с площадью 12 квадратных дюймов, средние плитки с площадью 8 квадратных дюймов и маленькие плитки с площадью 4 квадратных дюйма. После того, как участок границы потребует 4 больших плитки, 8 средних плиток и 10 маленьких плиток, чтобы покрыть ширину стены. Упростите выражение 412 + 88 + 104412 + 88 + 104, чтобы определить ширину стены. (Округлите до ближайшей десятой доли дюйма.)

Письменные упражнения

231.

Объясните разницу между одинаковыми радикалами и непохожими радикалами. Убедитесь, что ваш ответ имеет смысл для радикалов, содержащих как числа, так и переменные.

232.

Объясните процесс определения того, похожи ли два радикала или нет. Убедитесь, что ваш ответ имеет смысл для радикалов, содержащих как числа, так и переменные.

Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *