Содержание
Виды земной коры
Оболочка Земли включает земную кору и верхнюю часть мантии. Поверхность земной коры имеет большие неровности, главные из которых — выступы материков и их понижения — огромные океанические впадины. Существование и взаимное расположение материков и океанических впадин связано с различиями в строении земной коры.
Материковая земная кора. Она состоит из нескольких слоев. Верхний — слой осадочных горных пород. Мощность этого слоя до 10-15 км. Под ним залегает гранитный слой. Горные породы, которые его слагают, по своим физическим свойствам сходны с гранитом. Толщина этого слоя от 5 до 15 км. Под гранитным слоем располагается базальтовый слой, состоящий из базальта и горных пород, физические свойства которых напоминают базальт. Толщина этого слоя от 10 км до 35 км. Таким образом, общая толщина материковой земной коры достигает 30-70 км.
Океаническая земная кора. Она отличается от материковой коры тем, что не имеет гранитного слоя или он очень тонок, поэтому толщина океанической земной коры всего лишь 6-15 км.
Для определения химического состава земной коры доступны только ее верхние части — до глубины не более 15-20 км. 97,2% от всего состава земной коры приходится на: кислород — 49,13%, алюминий — 7,45%, кальций — 3,25%, кремний — 26%, железо — 4,2%, калий — 2,35%, магний — 2,35%, натрий — 2,24%.
На другие элементы таблицы Менделеева приходится от десятых до сотых долей процента.
Большинство ученых полагают, что сначала на нашей планете появилась кора океанического типа. Под влиянием процессов, происходивших внутри Земли, в земной коре образовались складки, то есть горные участки. Толщина коры увеличивалась. Так образовались выступы материков, то есть начала формироваться материковая земная кора.
В последние годы в связи с исследованиями земной коры океанического и материкового типа создана теория строения земной коры, которая основана на представлении о литосферных плитах. Теория в своем развитии опиралась на гипотезу дрейфа материков, созданную в начале XX века немецким ученым А. Вегенером.
Строение земной коры — урок. География, 5 класс.
Земная кора — ближайшая к поверхности твёрдая оболочка Земли.
Земная кора на суше и в Мировом океане отличается по мощности и количеству слоёв.
Толщина континентальной земной коры доходит до до \(75\) км. Она состоит из \(3\)-х слоёв. Верхний — осадочный, в котором преобладают осадочные породы. Гранитный слой состоит преимущественно из гранита и метаморфических горных пород. Базальтовый слой — из более плотных пород, плотность которых сравнима с базальтами.
Максимальная мощность океанической земная кора составляет \(5\) км. Она сложена \(2\)-мя слоями. Верхний слой — осадочный, нижний слой — базальтовый. Гранитный слой в океанической земной коре отсутствует.
Мощность континентальной коры под равнинами составляет \(30\)–\(50\) км, под горами — до \(75\) км. Мощность океанической коры — от \(5\) до \(10\) км.
Кора существует и на некоторых других планетах Солнечной системы, но только у Земли она подразделяется на \(2\) типа: континентальную и океаническую. На других планетах в большинстве случаев она состоит из базальтов.
Поверхность Мохоровичича
Учёный-геофизик Андрия Мохоровичич, изучая данные о сильном землетрясении \(1909\) года около города Загреб на Балканском полуострове, обратил внимание на то, что на глубине около \(30\) км скорость сейсмических волн, распространившихся от землетрясения, резко увеличилась. Андрия предположил, что существует некая граница раздела земной коры и мантии. На ней происходит увеличение скоростей сейсмических волн из-за увеличения плотности вещества.
Эту границу принято называть «поверхность Мохоровичича» («Мохо» или поверхность «М»).
Андрия Мохоровичич (\(1857\)–\(1936\)) — хорватский геофизик и сейсмолог. Андрия Мохоровичич родился \(23\) января \(1857\) года в городе Истрия (Хорватия). Долгое время преподавал метеорологию в Навигационном училище в Бакре и Загребе. С \(1910\) года был директором Государственного управления метеорологической службы и обсерватории в Загребе. В \(1909\) году открыл границу, разделяющую земную кору и мантию, эту поверхность позже назовут в его честь. Андрия также известен тем, что разработал методику регистрации землетрясений и сконструировал ряд геофизических приборов.
Кора материковая
Материковые окраины, краевые вулканические дуги, окраинные моря Зоны преимущественной деструкции континентальной коры (пассивные окраины) .[ …]
Кора переходных областей, то есть областей перехода от материка к океану. Здесь выделяют два различных типа перехода от континента к океану — тихоокеанский и атлантический. Наиболее характерным признаком материковой окраины тихоокеанического типа является наличие в ней активной сейсмичности и современного вулканизма. Для атлантического типа характерны стабильные условия, вследствие чего подошва земной коры имеет более выровненный рельеф. Сейсмичность для атлантического типа не типична, за исключением участков островных дуг, которые выражены в рельефе цепочками островов (Малые Антильские острова и др.).[ …]
Земная кора неодинакова по составу, строению и мощности. Различают континентальную, океаническую и промежуточную коры. Континентальная (материковая) кора покрывает третью часть земного шара, она присуща континентам, включая их подводные окраины, имеет толщину 35—70 км и состоит из 3 слоев: осадочного, гранитного и базальтового. Океаническая кора располагается под океанами, имеет толщину 5— 15 км и состоит из 3 слоев: осадочного, базальтового и габбро-серпентинитового. Промежуточная (переходная) кора имеет черты как континентальной, так и океанической коры.[ …]
Большинство материковых окраин, расположенных в областях с активным тектоническим режимом, являются окраинами складчатых сооружений. Со стороны океана многие из них опоясаны глубоководными желобами. Это обусловило резкие перепады высот на коротком расстоянии от наземной до абиссальной границ материковой окраины. Еще более важными признаками активных переходных зон являются высокая сейсмичность и, хотя далеко не везде, вулканическая (и магматическая) деятельность. Отдельную группу составляют зоны перехода между континентом и океаном, осложненные островными дугами и окраинными морями.[ …]
Океаническая кора значительно тоньше материковой и состоит из двух слоев. Ее минимальная мощность не превышает 5 — 7 км. Верхний слой земной коры здесь представлен рыхлыми глубоководными осадками. Мощность его обычно определяется в несколько сотен метров, а ниже располагается базальтовый слой мощностью в несколько километров.[ …]
ЛИТОСФЕРА (земная кора) [гр. Нйюв камень + Бр1шга шар] — верхняя твердая оболочка Земли, располагающаяся на мантии. Л. различна на материках и под океанами. Материковая кора состоит из прерывистой слоистой оболочки и расположенных под ней гранитного и еще ниже базальтового слоев. Общая толщина литосферы составляет 35—45 км (в горных областях до 50—70 км). Океаническая кора имеет толщину 5—10 км и состоит из тонкого (в среднем менее 1 км) слоя осадков, под которым находятся основные породы (базальт, габбро). [ …]
Третий слой океанической коры прослеживается от центра абиссальных котловин до внешнего края магнитной аномалии восточного побережья. Таким образом, океаническая природа коры под материковым подножием во многих районах не вызывает сомнения. Впрочем, детальное строение зоны в полосе 50—100 км на восток от края магнитной аномалии восточного побережья Северной Америки пока неизвестно. Наличие развернутых блоков осадочных пород и крупных диапиров позволяет думать, что она сложена в основном осадочными толщами. Континентальная кора в зоне шельфа перекрыта еще более мощным чехлом отложений 8—14 км), разбита на блоки и утонена.[ …]
Воды суши. К ним относятся материковые воды, переносимые реками, воды, сосредоточенные в озерах, болотах, ледниках, снежном покрове и заключенные в земной коре. Самая большая река мира — Амазонка, ее сток в океан составляет 16% стока всех рек мира. В ее бассейне расположен самый большой лесной массив планеты. Планетарный резерв пресной воды высокого качества сосредоточен в озере Байкал, которое содержит пресной воды больше, чем все пресные озера мира. Территория Земли на 2% покрыта болотами. В России и Белоруссии расположено свыше 60% всех болот. Ледники покрывают 16 млн км2 суши, основная их часть расположена в Антарктиде. Если бы все ледники растаяли, то уровень Мирового океана поднялся по сравнению с нынешним на 64 м.[ …]
Понятие края континента или материковой окраины, родившееся как чисто географическое, приобрело в дальнейшем глубокий геологический смысл. Яркая морфоструктурная выраженность, проявившаяся в существовании подводной морской террасы — шельфа, уступа материкового склона и, наконец, обширного глубоководного подножия, а также огромная протяженность материковых окраин, равная, согласно К. О. Эмери (1977 г.), почти 195 тыс. км, позволяют считать их одной из важнейших черт лика Земли. Повсеместная контрастность рельефа, перепады которого достигают в зоне перехода от материка к океану 10—15 тыс. и (Перу), резкое изменение геофизических характеристик, отражающее различный состав коры, а, возможно, и верхней мантии, яркая специфичность геологических, океанографических и других процессов на (и над) материковой окраине — все это подчеркивает то особое положение, которое она занимает в рельефе земной поверхности, будучи отражением основной геологической границы: контакта коры континентальной с корой океанической. [ …]
Твердая оболочка Земли — земная кора, сложенная осадочными и кристаллическими породами, образует сплошную оболочку, 2/3 которой перекрыто водами океанов и морей. Наибольшая мощность земной коры 40—100 км, под океанами толща ее резко сокращается. По физическим свойствам земная кора делится на два типа: материковый и океанический. Земная кора материкового типа — равнинных и горных районов — богата кремнием и алюминием, характерными для пород группы гранита. Мощность гранитного слоя (сиаля) увеличивается в горах. Океанический тип земной коры представлен породами типа базальта с преобладанием кремния и магния. Здесь гранитный слой отсутствует, а мощность базальтового слоя (сима) доходит до 15 км.[ …]
Последние некогда были бортовыми частями одного и того же или нескольких рифтовых грабенов. Облик такого грабена, с развитием которого могло быть связано формирование первичных глубоких впадин с океанической корой, показан на рис. 28. Бортовые части подобных впадин в дальнейшем, вероятно, трансформировались в уступы материковых склонов, подобные тем, что существуют в настоящее время в Красном море. [ …]
Следы дробления и распада древней континентальной коры обнаруживаются и на окраинах, входящих в состав сложпопо-строенных зон перехода, которые включают: 1) современную окраину материка, 2) окраинную океаническую, относительно молодую впадину, 3) островную вулканическую дугу или серию остаточных дуг и активный вулканический хребет, разделенные междуговыми впадинами, 4) переходную ступень в системе вулканическая дуга — глубоководный желоб, 5) собственно глубоководный желоб. Во многих регионах с подобным или близким строением находятся фрагменты (массивы) континентальной коры, отторгнутые от основной материковой глыбы. Это — массив Ямато в Японском море, острова Японского архипелага, плато Мергуй в Андаманском море, подводные поднятия Норфолк и Лорд-Хау в Коралловом море, нагруженные массивы с континентальным типом коры в море Скоша и др.[ …]
Геосинклинали — обширные подвижные участки земной коры с разнообразными по интенсивности и направленности тектоническими движениями. В своем развитии геосинклинали проходят два этапа: первый (более продолжительный) характеризуется погружением и морским режимом (при этом формируется океаническая земная кора), второй (менее продолжительный) — интенсивным поднятием и горообразованием (при этом формируется материковая земная кора). Первый этап связан с расхождением литосферных плит, второй — с их сближением и столкновением.[ …]
Между строением земной коры, ее тектоникой и рельефом существует тесная связь. Формы рельефа, в создании которых ведущая роль принадлежит тектоническим особенностям земной коры, получили у геоморфологов наименование морфоструктур (от греч. morphé — форма, и лат. structura — строение). Основные материковые морфоструктуры — платформенные равнины, плоскогорья, складчатые горы, складчато-глыбовые горы, нагорья.[ …]
На основе различия в составе и мощности выделяют три типа земной коры: 1) материковая; 2) океаническая; 3) кора переходных областей.[ …]
Помимо активных окраин, в пределах которых происходит ску-чивание континентальной коры и (или) надстраивание древнего континентального мегаблока чужеродными (океаническими) комплексами отложений, существуют и другие зоны перехода от континента к океану, развитие которых сопровождается созиданием молодой коры, континентальной и океанической. В данном случае речь идет не столько о самой материковой окраине, сколько об огромной по протяженности и ширине области, в составе которой выделяются несколько структурно-тектонических зон: 1) собственно край континента; 2) окраинный океанический бассейн; 3) одна или несколько островных дуг (активных и неактивных), разделенных междуговыми впадинами. Сложное строение и своеобразный ход развития подобных переходных зон не нашли до настоящего времени достаточно убедительного объяснения ни в одной из существующих тектонических моделей.[ …]
Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. На гипсографической кривой находит отчетливое морфологическое выражение материковая отмель, или шельф, — затопленная водой низменная окраина континентов, а также материковый склон, у подножия которого, в среднем на глубине 2450 м, происходит замещение континентальной коры океанической. Заслуживает внимания совпадение отметок подножия материкового склона со средним (выравненным) уровнем земной коры — 2430 м ниже уровня океана. Если выравненную поверхность земной коры покрыть водой, содержащейся в Океане, уровень последнего окажется на 250 м выше современного.[ …]
Особым типом окраины материка в областях преимущественных напряжений сжатия и скучивания коры признается северо-восточная оконечность Аравийского полуострова (побережье Омана и Объединенных Арабских Эмиратов). Это типичная, обрамляющая древний кратон пассивная окраина, которая надстроена мощной пластиной офиолитов и толщей осадочных пород глубоководного генезиса. Последние в фациальном отношении совершенно чужды, как считают М. Уэлленд и А. Митчелл, одновозрастным образованиям мелководного типа, слагающим мезозойский осадочный чехол в краевой части аравийского кратона. Появление офиолитов на пассивной окраине объясняют явлением обдукции — надвиганием океанского ложа на континентальный блок с частичной переработкой последнего. Вполне, однако, возможно, что в данном случае мы имеем дело с осадочной толщей, слагавшей некогда (в мезозое) материковое подножие, находившееся в составе самой окраины Омана. Эта толща вместе с фрагментами океанической коры, на которой она залегала, была выжата на край Аравийской платформы при закрытии южного рукава Тетиса.[ …]
Общее количество воды на земном шаре, исключая химически и физически связанную воду земной коры и мантии, по приближенным подсчетам, составляет 1,5 млрд. км3. На долю океанов и морей приходится примерно 1,37 млрд. км3 воды, т. е. около 94% этого количества. Поверхностные воды суши: рек, озер, болот, снежников и ледников в горах, материковых льдов, включая льды Антарктиды и Гренландии,—составляют менее 2% общего количества воды на земном шаре.[ …]
Гидросфера — прерывистая водная оболочка Земли, располагающаяся между атмосферой и земной корой. Она включает в себя совокупность всех вод планеты: материковых (глубинных, почвенных, поверхностных), океанических и атмосферных. Гидросфера является колыбелью жизни на нашей планете. Она играет огромную роль в формировании природной среды нашей планеты.[ …]
Несмотря па это, основной тенденцией в развитии сложнопо-строенных переходных зон является не деструкция, а новообразование континентальной коры. Последняя первоначально формируется в районах активного известково-щелочного магматизма, который сопровождается и завершается внедрением кислых интрузий и образованием гранитных батолитов, становящихся теми центрами, вокруг которых происходит консолидация новой коры. Долговременное развитие подобных регионов во многих случаях завершается сближением некогда активной вулканической дуги и края континента с последующим присоединением к нему. Результатом является разрастание материкового мегаблока с образованием нового края континента. Благодаря исследованиям С. М. Тиль-мана, Ю. А. Косыгина и других исследователей, на Северо-Восто-ке СССР были обнаружены реликты вулканических поясов, вероятно, фрагменты древних островных дуг, ныне впаянных в материковую глыбу. Выявляются и области внедрения древних мантийных диапиров, которые, видимо, следует отождествлять с некогда существовавшими глубоководными котловинами окраинных морей. Краевые области Азиатского материка на значительном протяжении образованы корой, имеющей позднемезозойский и кайнозойский возраст, что свидетельствует о разрастании этой части Азии во времени. [ …]
Многие переходные зоны в Средиземном море также принадлежат к разряду активных окраин, формировавшихся в условиях преобладающего сжатия и скучивания земной коры. Таковы, например, лигурийская и сицилийско-калабрийская окраины Италии, которые сложены комплексами в разной степени метаморфизован-ных глубоководных осадков древних материковых окраин, вовлеченных в альпийскую фазу сжатий и орогенеза и образующих фундамент в пределах современного шельфа и материкового склона. На строении первой из них мы остановимся подробнее.[ …]
Работа представляет интерес для геологов, петрографов, тектонистов и геофизиков, интересующихся вопросам геологии и петрологии метаморфических пород, проблемами соотношения материковых и океанических структур и эволюции земной коры на континентальных окраинах.[ …]
Образованная тектонически и морфологически разнородными элементами, которые объединены общим географическим положением и возникли под влиянием одних и тех же геологических событий, материковая окраина вне зависимости от ее возраста является сложным гетерогенным образованием, в состав которого входят участки с континентальной и океанической корой. Глубинная граница между ними еще не расшифрована окончательно. На атлантических и индоокеанских окраинах континентов ее отождествляют либо с аномалией Е, расположенной в средней части зоны невозмущенного магнитного поля, как, например, это делает Ф. Рабинович (1978 г.), либо с внутренним краем этого поля. В районе атлантического склона окраины США наблюдается магнитная аномалия восточного побережья, имеющая в ширину от 50 до 70 км. Южнее 36° с. ш. эта аномалия разделяется на две ветви, из которых внешняя прослеживается вдоль изобаты 1200—1300 м. В районе шельфа на глубине 7—10 км обнаруживаются источники магнитных возмущений, которые, как полагают, представляют собой либо слабо намагниченные блоки пород фундамента, либо волосы даек и силлов, внедрившихся в осадочную толщу в раннемеловое время [43].[ …]
Соответственно тому что мы можем различать тыловой (распадающийся), ведущий (увеличенный в мощности) и разрастающийся во времени края континента, нами могут быть выделены три основных типа материковых окраин: 1) возникшие за счет фрагментации и дробления древней континентальной коры, 2) в пределах которых наблюдается увеличение мощности континентальной коры (литосферы), 3) сложнопостроенные зоны перехода (с окраинными морями и островными вулканическими дугами), с которыми связано формирование молодой континентальной коры. [ …]
Самые крупные и сложные геокомплексы Земли — это континенты и океаны. Они формируются на самых крупных формах рельефа — континентальных выступах и океанических впадинах Земли с различными типами земной коры. Земная кора континентов в отличие от океанической имеет значительно большую мощность и гранитный слой. Граница между континентами и океанами как геокомплексами проходит по береговой линии. К океанам как аквальным геокомплексам относится затопленная часть континентов-шельф, материковый склон и дно, сложенное базальтовым слоем.[ …]
В мировой научной литературе за всеми перечисленными окраинами установилось одно общее название: атлантические окраины, или окраины атлантического типа, причем к числу последних относят и большую часть материковых окраин в Индийском и Северном Ледовитом океанах, а также молодые по возрасту окраины в Красном море. Особняком стоят окраины, испытавшие интенсивное дробление, в результате которого от континентальной глыбы были отторгнуты крупные и мелкие массивы, ныне разделенные участками с континентальной утоненной (глубокие прогибы) либо с океанической корой, частично заполненными толщами осадков. К таковым могут быть отнесены скандинавско-британская часть окраины Западной Европы, район Багамской подводной платформы и плато Блейк, Сейшельский микроконтинент и др. (рис. 2).[ …]
В барремский век произошли очередная активизация рельефа и омоложение. Климат, вероятно, все более приближался к гумид-ному тропическому, а на некоторых поднятиях и возвышенных плато образовались достаточно мощные коры выветривания, размыв которых привел к интенсивному выносу тонкодисперсной взвеси, обогащенной окислами железа и кремнеземом. Благодаря этому в центральных районах Атлантического океана, но главным образом па материковом подножии отложились горизонты пестроцветных глин. Бокситы этого возраста известны в пределах так называемой суши Эбро на Иберийском полуострове и в пределах Тулузской суши. В апте активизировался спрединг океанического дна в южной впадине Атлантического океана. Южнее хребтов Китовый и Рио-Гранде на месте рифтовых прогибов и оперяющих их грабенов еще в неокоме возникла впадина океанического типа, в которой по данным В. Людвига, В. Крашениникова и И. Басова, полученным в 1980 г., установился режим морской терригениой седиментации и накапливались глинистые осадки, обогащенные органическим веществом. В аптский век здесь сформировались проградационные комплексы подводно-дельтовых песчано-алевритово-глинистых отложений, наращивавших древний шельф и склон Африки в Капской котловине. Наличие структурного порога по линии хр. Рио-Гранде затрудняло водообмен между этой морской впадиной и расположенными севернее обширными эпиконтинентальными бассейнами, возникшими на месте рифтовых грабенов.[ …]
Например, океанский зоопланктон, очищая при биофильтрации огромные массы воды, выбрасывает пищевые комки (пеллеты), которые осев в зонах перехода океан — материк, затем во многом оказываются строительным материалом и источником энергии в процессах трансформации блоков океанической коры в кору материков. Знание этой связи имеет огромный теоретический интерес, однако не только он должен быть проявлен, когда процесс биофильтрации будет оцениваться как глобальный фактор, влияющий на поддержание на определенном уровне альбедо поверхности океана. Изучение от пеллеты до материкового сегмента — таков диапазон геоэкологии. Другой пример -изучение геологической истории не для поисков полезных ископаемых и лучшего познания эволюции организмов, а для понимания и оценки степени риска антропогенной дестабилизации биосферы.[ …]
Наиболее изученной среди переходных зон в областях с пассивным тектоническим режимом является атлантическая окраина США, глубинное строение которой показано на рис. 3. Исследования с помощью многоканальной сейсмической аппаратуры показали, что во многих районах этой окраины помимо современного материкового склона существует палеосклон, расположенный восточнее современного и захороненный под толщей осадков. В районе банки Джорджес под внешней частью шельфа и склоном на глубине 1800 м от дна находится кровля толщи осадочных пород, верхняя поверхность которой круто падает на восток до глубин 4,5—5 км. Этот массив отождествляется с мощной карбонатной платформой, сформировавшейся в позднем мезозое [43]. Массив служит ограничением для крупного прогиба, приуроченного к внутренним районам шельфа и выполненного мезозойскими и кайнозойскими отложениями мощностью до 10 км. Глубина залегания фундамента под самой карбонатной платформой не установлена. В районе подножия акустический фундамент (кровля океанической коры) находится на глубине 7—8 км ниже уровня моря, т. е. мощность осадков, главным образом кайнозойских, здесь составляет от 3 до 4 км. Внешняя граница древнего склона, образованная, судя по результатам драгировок, выполненных в каньонах этой зоны В. Райаном и другими исследователями в 1976 г., рифовыми известняками неокомского возраста, выдвинута на восток от современного всего на несколько километров [43].[ …]
Для рельефа дна Атлантического океана характерно наличие многочисленных банок, расположенных среди глубин в несколько тысяч метров. Особенно много таких банок в северной части океана к западу от побережья Марокко и Испании. Другая особенность рельефа дна Атлантического океана — большие площади, занятые материковой отмелью и склоном (до 2000 м). Для Атлантического океана характерно также наличие обширных абиссальных равнин с плоской поверхностью, расположенных у основания материкового склона по обе стороны Срединно-Атлантического хребта. Они распространены и в Западной, и в Восточной Атлантике. Эти абиссальные равнины обнаружены около 15 лет назад и еще недостаточно изучены. Многочисленные факты подтверждают их существование в океанах и морях в виде подводных течений. Спускаясь по склону морского дна, эти потоки способствуют образованию эрозионных долин, ущелий и ложбин, а также отложению осадков из взвешенных песков и глин. Они выносят и отлагают вдали от берегов на больших глубинах континентальные осадки и остатки отмершей мелководной фауны.[ …]
К первому типу относится тихоокеанская окраина Южной Америки, или андийская окраина, как ее определили в 1976 г. Л.П.Зо-неншайн, М. И. Кузьмин и В. М. Моралев. Активные тектонические взаимодействия, происходящие здесь, на границе океанического и континентального мегаблоков, приводят к полутора-дву-кратному возрастанию мощности коры в краевых частях материковой глыбы. Пояс андезитовых вулканов и гранитоидные плутоны располагаются на этой окраине в пределах древнего континентального субстрата (рис. 8). Выходы древних палеозойских и докембрийских образований в ядрах островных антиклинальных складок на внешнем шельфе Перу, а также, по-видимому, и в верхней половине материкового склона свидетельствуют о том, что основные структурно-тектонические элементы в подводной части окраины этого района также сложены древней континентальной корой, а не относительно молодыми отложениями так называемой аккреционной призмы. Аккреция осадков вдоль внутреннего борта Перуано-Чилийского желоба, видимо, не была выражена и даже, напротив, преобладали процессы эрозии.[ …]
Хребет Менделеева и поднятие Альфа образуют единый порог с минимальной глубиной 1230 м, отделенный Канадской котловиной от поднятия Бофорта. Новейшими советскими исследованиями в проливе между Шпицбергеном и Гренландией открыта рифтовая долина Лены, а в котловине Нансена впадина Литке с наибольшей в Северном Ледовитом океане глубиной (5400 м). На материковой отмели и особенно на склоне Северного Ледовитого океана встречаются подводные долины, погруженные речные долины, древние дельты сибирских рек и другие формы унаследованного рельефа. Геологическая история материковой окраины Северного Ледовитого океана более многообразна, чем в других океанах. Сочетание различных геологических структур (Америки, Гренландии, Евразии) определяет разнообразие в строении земной коры в Северном Ледовитом океане. Систематическое изучение физических полей — магнитного, сейсмического и гравитационного — позволило советским геологам более обоснованно судить о стадийности развития, структуре и происхождении Северного Ледовитого океана. На основании этих исследований предполагается, что евразийская часть океана является погруженным материком и континентальная кора переработана в океаническую. Хребет Ломоносова представляется как континентальная, частично погруженная структура, отделенная от материковой отмели западной Евразии.[ …]
Антисимметрия мегарельефа материков и океанов. Эту важнейшую закономерность в структуре географической оболочки впервые установил в 1935 г. А. А. Григорьев еще до открытия срединно-океанических хребтов как глобального явления. В работе «В поисках закономерностей морфологической структуры земного шара» он приходит к заключению о контрасте, противостоянии общего плана, морфологии материковой и океанической литосферы: в то время как материковые массивы характеризуются наличием срединного пояса низин и впадин, обрамленного боковыми поясами поднятий, в океанической литосфере в ее средней части (по длинной оси) наблюдается пояс поднятий, окаймленный справа и слева поясами значительно больших глубин. Общепринятого объяснения этой закономерности пока не дано. Скорее всего, она результат наложения неоднородности земной коры и мантии на глобальный ротационный эффект.[ …]
Если для глубоководных (дистальных) частей любой пассивной окраины характерны преимущественно движения отрицательного знака, которые не компенсируются в полной мере даже при относительно высоких скоростях аккумуляции осадков, то на окраинах континентальных рифтов в погружения втянуты также шельф и прилегающие районы суши. Преимущественные погружения испытывают и отторгнутые от материковой глыбы древние блоки с континентальным типом коры, например Багамская платформа, банка Роккол, Сейшельский микроконтинент и др. Напротив, для значительной части окраин эниплатформенных орогенных поднятий характерны движения положительного знака. Последними захвачены прибрежные районы континентальной отмели, о чем свидетельствует скалистый тии побережья, многочисленные выходы коренных пород в прибрежной часги шельфа и на срединной шельфовой равнине. Зато дистальные участки окраииы в данном случае втянуты в более выраженное прогибание, на что указывает сам профиль окраины: присутствие крупных сорванных блоков древних пород, развитие нроградационных серий на краю шельфа, а при наличии в разрезе древних соленосных толщ—многочисленные соляные диапиры.[ …]
На атлантических окраинах Африки, обрамляющих иа большом протяжении области эпиплатформенного орогенеза, наиболее древние горизонты осадочного чехла обнажаются на склонах прибрежных поднятий. Мощность осадочного плаща быстро увеличивается от линии выклинивания к побережью. В бассейне Тарфая-Аюн осадочная линза мощностью до 12—14 км прослеживается почти по всему профилю окраины, включая шельф, склон и верхнюю половину подножия. Максимальной толщины осадочный чехол достигает под внешним шельфом и материковым склоном, причем большую его часть (до 8 км) составляют отложения домелового возраста [41]. В их составе особенно интересны юрские известняки, образующие мощную карбонатную платформу наподобие тех, которые описаны на атлантической окраине США. Интересно падение горизонтов этого возраста в сторону суши или их горизонтальное залегание под верхней частью склона, что позволяет говорить об антиклинальной структуре склона. Полагают, что ее образование было связано с явлением изостазии — «вспучиванием» коры под действием резко изменившейся нагрузки (уменьшением массы осадочной толщи). Последнее было обусловлено глубокой эрозией палеосклона, отступившего в кайнозое на несколько десятков километров (до 50 км в районе Тарфая-Аюн [41] ) в сторону суши. Стратиграфический перерыв в нижней части склона и прилегающих районах подножия отвечает интервалу времени в 100 млн. лет.[ …]
Как показывают детальные геофизические исследования последних лет, а отчасти и материалы глубоководного бурения, внешняя кромка юрского шельфа располагалась, вероятно, на 60—100 км мористее современной. С нею зачастую отождествляют погруженный край древних карбонатных платформ, положение которого четко устанавливается геофизическими методами под современным склоном, а иногда в районе подножия в различных районах атлантической окраины США [43]. Расширение океанического ложа сопровождалось дроблением периферийных участков континентальной коры и погружением отдельных блоков. Непрерывные опускания, которыми был охвачен край континента, благоприятствовали в условиях аридного климата, господствовавшего на многих окраинах юрского периода, активному рифострои-тельству вдоль внешней кромки древней континентальной отмели. Лишь в прибрежных районах, в непосредственной близости от склонов эпирифтовых поднятий, накапливались терригенные морские, в основном песчаные осадки. Реконструкция обстановок се-диментогенеза, характерных для пассивных материковых окраин, располагавшихся в тропических и субтропических климатических зонах, дана на рис. 37.[ …]
Уже после получения первых приблизительных оценок скорости денудационного среза на континентах, близких к 0,1 мм/год, среди ученых утвердилось представление о существовании большого геологического круговорота, схема которого представлена на рис. 00. Идея возвращения продуктов денудации суши в преобразованной форме в ходе трансформации океанических геосинклиналей в складчатые сооружения была увязана с концепцией разрастания материков за счет океанов и обоснована с петрологических позиций А.Рингвудом и Д. Грином еще в начале 1960-х гг. Механизм возвращения материкам продуктов сноса в составе наращивающих их новых материковых сегментов, содержащих также фрагменты океанической коры и вещество мантийной дифференциации, объясняется с позиций теории геосинклиналей, увязанной с важнейшими аспектами тектоники плит.[ …]
Таким образом, наиболее интенсивные седиментационные процессы приурочены в настоящее время к зал. Мартабан и прилегающей части открытого шельфа, где расположена авандельта р. Иравади, а также к юго-восточной области шельфа к северу от Малаккского полуострова. В первом районе происходит аккумуляция глинистых тонкодисперсных плов, во втором — карбонатных песков и глинисто-карбонатных осадков. Большая часть твердого стока р. Иравади поступает по каньонам в халистазу. Впрочем, и сам склон на значительном протяжении заполнен глинистыми илами своеобразного кремового либо красноватого цвета, очень тонкими, с большим содержанием окисного железа. Это редкий случай накопления нестроцветных морских осадков, содержащих продукты перемыва латеритных и ферралитных кор выветривания. Последние распространены на склонах прибрежных хребтов и на высоких плато Бирмы. Терригенные составляющие представлены в первом типе осадков алевритовым, во втором — глинистым материалом. У подножия материкового склона предполагается аккумуляция осадков оползневого и турби-дитного происхождения. Таким образом, на материковой окраине в Анадаманском море осадочные процессы отличаются различной интенсивностью и направленностью: области чисто терригенной седиментации здесь соседствуют с зонами карбонатного осадкона-копления. Неожиданным для этого тропического района можно считать широкое распространение реликтовых образований и сравнительно небольшую роль вещества биогенной природы. [ …]
Типичной аккреционной окраиной является восточная часть п-ова Камчатка, где цепь действующих и недавно потухших вулканов, по-видимому, расположена на меловом субокеаническом субстрате. Сложное сочетание тектонических движений в период формирования тихоокеанской окраины Камчатки выразилось в появлении своеобразной ячеистой структуры переходной зоны. Последняя распадается на три примерно равных участка, которые в геоморфологическом отношении отвечают трем заливам: Авачнн-скому, Кроноцкому и Камчатскому. Если на других окраинах заливы обычно представляют собой участки погруженной прибрежной равнины, нивелированные абразией и являющиеся частью континентальной террасы, то в данном случае залив выражен и в подводном рельефе на глубину до 3000—4000 м. Он включает часть материкового (полуостровного) склона, глубокую замкнутую депрессию и меридиональный подводный хребет, отчленяющий одну ячею (залив) от другой. Лишь глубоководный желоб и обрамляющий его со стороны Камчатки глубинный уступ принадлежат всей окраине в целом. Таким образом, если геоморфологическая (и тектоническая) зональность в большинстве переходных зон наиболее ярко выражена в направлении по нормали к береговой линии и ко всей окраине в целом, то в пределах Восточной Камчатки неоднородность строения земной коры проявляется не только вкрест простирания окраины, но столь же отчетливо и в латеральном направлении. Все это предопределило образование сложной, ло-своему уникальной структуры тихоокеанской окраины Камчатки.[ …]
Согласно новой глобальной тектонике, вся литосфера разбита на небольшое число плит, крупнейшие из которых Евразийская, Индо-Австралийская, Тихоокеанская, Африканская, Американская, Антарктическая. Главное положение тектоники плит гласит: сейсмические пояса представляют собой зоны, где происходят дифференциальные движения жестких плит» (К- Ле Пишон, Ж. Франшто, Ж- Боннин, 1977). В связи с этим границы плит определяются не границами материков и океанов, а поясами сейсмичности, сами же плиты состоят как из материковой, так и океанической коры. Исключение — Тихоокеанская плита, состоящая из океанической коры.[ …]
ЗЕМНАЯ КОРА • Большая российская энциклопедия
ЗЕМНА́Я КОРА́, верхняя твёрдая оболочка Земли, ограниченная снизу Мохоровичича границей. Tермин «З. к.» появился в 18 в. в работах M. B. Ломоносова и в 19 в. в трудах Ч. Лайеля; c развитием контракционной гипотезы в 19 в. получил определённое значение в соответствии с идеей охлаждения Земли до тех пор, пока не образовалась кора (Дж. Дана). B основе представлений o составе, структуре и физич. свойствах З. к. лежат геофизич. данные o скоростях распространения сейсмич. волн (в осн. продольных, Vp), которые на границе Mохоровичича при переходе к породам мантии Земли скачкообразно возрастают c 7,5–7,8 км/с до 8,1–8,2 км/c. Природа нижней границы З. к., по-видимому, обусловлена изменением химич. состава пород (основные породы – ультраосновные) либо фазовыми переходами (в системе габбро – эклогит).
Для З. к. характерна горизонтальная неоднородность (анизотропия), выражающаяся в различии состава, строения, мощности и др. характеристик коры в пределах её отд. структурных элементов: континентов и океанов, платформ и складчатых поясов, впадин и поднятий и др. Выделяют два гл. типа З. к. – континентальную и океаническую.
Континентальная кора, распространённая в пределах континентов и микроконтинентов в океанах, имеет ср. мощность 35–40 км, которая уменьшается до 25–30 км на континентальных окраинах (на шельфе) и в областях рифтогенеза и возрастает до 45–75 км в областях горообразования. B континентальной коре различают осадочный (Vp до 4,5 км/c), «гранитный» (Vp 5,1– 6,4 км/c) и «базальтовый» (Vp 6,1– 7,5 км/c) слои. Осадочный слой отсутствует на щитах и менее крупных поднятиях фундамента древних платформ, а также в осевых зонах складчатых сооружений. Во впадинах молодых и древних платформ, передовых и межгорных прогибах складчатых сооружений мощность осадочного слоя достигает 10 км (редко 20–25 км). Он сложен преим. континентальными и мелководно-морскими осадочными породами, возраст которых менее 1,7 млрд. лет, а также платобазальтами (траппами), силлами магматич. пород основного состава, туфами. Названия «гранитного» и «базальтового» слоёв условны и исторически связаны c выделением границы Kонрада (Vp 6,2 км/c), разделяющей слои, в которых скорости продольных сейсмич. волн соответствуют скоростям в граните и базальте. Последующие исследования (в т. ч. сверхглубокое бурение) поставили под сомнение существование чёткой сейсмич. границы, поэтому оба эти слоя объединяют в консолидированную кору. «Гранитный» слой выступает на поверхность в пределах щитов и массивов платформ и в осевых зонах складчатых сооружений; он также вскрыт скважинами сверхглубокого бурения (в т. ч. Кольской сверхглубокой скважиной на глубину св. 12 км). Его мощность на платформах 15–20 км, в складчатых сооружениях 25–30 км. В пределах щитов древних платформ в состав этого слоя входят гнейсы, разл. кристаллич. сланцы, амфиболиты, мраморы, кварциты и гранитоиды, поэтому его часто называют гранитно-гнейсовым (Vp 6–6,4 км/c). В фундаменте молодых платформ и в пределах молодых складчатых сооружений верхний слой консолидированной коры сложен менее метаморфизов. породами и содержит меньше гранитов, в связи с чем его также именуют гранитно-метаморфическим (Vp 5,1–6 км/c). Прямое изучение «базальтового» слоя континентальной коры невозможно. Значениям скоростей сейсмич. волн, по которым он выделен, могут удовлетворять как магматич. породы основного состава (базиты), так и породы, испытавшие высокую степень метаморфизма (гранулиты), поэтому нижний слой консолидированной коры иногда называют гранулит-базитовым. Отнесение к З. к. или верхней мантии пород со скоростями продольных сейсмич. волн более 7 км/c спорно. Возраст древнейших пород консолидированной коры достигает 4 млрд. лет.
Oсн. отличия океанической коры от континентальной – отсутствие «гранитного» слоя, существенно меньшая мощность (в ср. 5–7 км), более молодой возраст (юра, мел, кайнозой; менее 170 млн. лет), бо́льшая латеральная однородность. Oкеанич. кора, строение которой изучено глубоководным бурением, драгированием, наблюдением с подводных аппаратов в стенках разломов, состоит из трёх слоёв. Первый слой, или осадочный, состоит из пелагич. кремнистых, карбонатных и глинистых осадков (Vp 1,6–5,4 км/c). В направлении континентальных подножий его мощность возрастает до 10–15 км. Осадочный слой может отсутствовать в осевых зонах срединно-океанич. хребтов. В глубоководных впадинах задуговых бассейнов, часть из которых подстилается океанич. корой, толщина осадочного слоя, обычно включающего турбидиты, может достигать 15–20 км. Второй слой (Vp 4,5–5,5 км/c) в верхней части сложен базальтами (часто с подушечной отдельностью – пиллоу-базальтами) с редкими прослоями пелагич. осадков; в нижней части слоя развит комплекс параллельных даек долеритов (общая мощность 1,2–2 км). Третий слой (Vp 6–7,5 км/c) в верхней части состоит из массивных габбро, в нижней – из расслоенного комплекса, в котором габбро чередуются с ультраосновными породами (общая мощность 2–5 км). В пределах внутр. поднятий океанов З. к. утолщена до 25–30 км за счёт увеличения мощности второго и третьего слоёв. Древним аналогом океанич. коры на континентах являются офиолиты.
Океанич. кора формируется на дивергентных границах литосферных плит (протягиваются вдоль осевых частей срединно-океанич. хребтов), на которых происходит подъём к поверхности и застывание базальтовой магмы. Континентальная кора образуется в процессе переработки океанич. коры на активных континентальных окраинах.
Кроме двух гл. типов З. к., выделяют переходные типы. Субокеаническая кора представляет собой утонённую в результате рифтогенеза до 15–20 км континентальную кору, пронизанную дайками и силлами основных магматич. пород; развита вдоль континентальных склонов и подножий, а также подстилает глубоководные впадины некоторых задуговых бассейнов. Субконтинентальная кора (недостаточно консолидированная, мощность менее 25 км) наблюдается в вулканических островных дугах, где океаническая кора превращается в континентальную.
З. к. испытывает горизонтальные и вертикальные тектонические движения. В ней расположены очаги землетрясений, формируются магматич. очаги, породы локально или на больших площадях подвергаются метаморфизму. Тектонич. движения З. к. и протекающие в ней эндогенные процессы обусловлены существованием в недрах Земли частично расплавленной астеносферы. Под действием тектонич. движений и деформаций, магматич. деятельности, метаморфизма, экзогенных процессов (перемещение ледников, оползни, карст, речная эрозия и др.) горные породы З. к. вовлекаются в складчатые и разрывные дислокации тектонические. Воздействие на породы З. к. атмо-, гидро- и биосферы приводит к их выветриванию.
Об эволюции З. к. на протяжении геологич. истории см. в ст. Земля.
|
Строение земной коры
Земная кора – внешняя твердая оболочка Земли, верхняя часть литосферы. От мантии Земли земная кора отделена поверхностью Мохоровичича.
Принято выделять материковую и океаническую кору, которые различаются по своему составу, мощности, строению и возрасту. Материковая кора расположена под материками и их подводными окраинами (шельфом). Земная кора материкового типа толщиной от 35-45 км расположена под равнинами до 70 км в области молодых гор. Наиболее древние участки материковой коры имеют геологический возраст, превышающий 3 миллиарда лет. Она состоит из таких оболочек: коры выветривания, осадочной, метаморфической, гранитной, базальтовой.
Океаническая земная кора значительно моложе, её возраст не превышает 150-170 миллионов лет. Она имеет меньшую мощность – 5-10 км. В пределах океанической земной коры отсутствует граничный слой. В строении земной коры океанического типа выделяют следующие слои: неуплотненных осадочных пород (до 1 км), вулканический океанический, который состоит из уплотненных осадков (1-2 км), базальтовый (4-8 км).
Каменная оболочка Земли не представляет собой единого целого. Она состоит из отдельных блоков – литосферных плит. Всего на земном шаре насчитывается 7 крупных и несколько более мелких плит. К крупным относятся Евразиатская, Североамериканская, Южноамериканская, Африканская, Индо–Австралийская (Индийская), Антарктическая и Тихоокеанская плиты. В пределах всех крупных плит, за исключением последней, расположены материки. Границы литосферных плит проходят, как правило, вдоль срединно-океанических хребтов и глубоководных желобов.
Литосферные плиты постоянно изменяются: две плиты могут спаиваться в единую в результате коллизии; в результате рифтинга может произойти раскол плиты на несколько частей. Литосферные плиты могут погружаться в мантию земли, достигая при этом земное ядро. Поэтому разделение земной коры на плиты не однозначно: с накоплением новых знаний некоторые границы плит признаются несуществующими, выделяются новые плиты.
В пределах литосферных плит расположены участки с различными типами земной коры. Так, восточная часть Индо-Австралийской (Индийской) плиты – материк, а западная расположена в основании Индийского океана. У Африканской плиты материковая земная кора с трёх сторон окружена океанической. Подвижность атмосферной плиты определяется соотношением в её пределах материковой и океанической коры.
При столкновении литосферных плит возникает складкообразование слоев горных пород. Складчатые пояса – подвижные, сильно расчленённые участки земной поверхности. В их развитии выделяется два этапа. На начальном этапе земная кора испытывает преимущественно опускания, происходит накопление осадочных горных пород и их метаморфизация. На заключительном этапе опускание сменяется поднятием, горные породы сминаются в складки. В течение последнего миллиарда лет на Земле было несколько эпох интенсивных горообразований: байкальское горообразование, каледонское, герцинское, мезозойское и кайнозойское. В соответствии с этим выделяют различные области складчатости.
Впоследствии горные породы, из которых состоит складчатая область, теряют подвижность и начинают разрушаться. На поверхности накапливаются осадочные породы. Образуются устойчивые участки земной коры – платформы. Они обычно состоят из складчатого фундамента (остатки древних гор), перекрытого сверху слоями горизонтально залегающих осадочных пород, образующих чехол. В соответствии с возрастом фундамента выделяют древние и молодые платформы. Участки пород, где фундамент погружён на глубину и перекрыт осадочными породами, называют плитами. Места выхода фундамента на поверхность называют щитами. Они более характерны для древних платформ. В основании всех материков расположены древние платформы, края которых являются складчатыми областями разного возраста.
Распространение платформенных и складчатых областей можно увидеть на тектонической географической карте, или на карте строения земной коры.
Остались вопросы? Хотите знать больше о строении земной коры?
Чтобы получить помощь репетитора – зарегистрируйтесь.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
GISMETEO.RU: Какова температура земной коры? — События
Земля расположена достаточно близко к Солнцу, чтобы получаемой энергии хватало на поддержание тепла и существования воды в жидком виде. В основном благодаря этому наша планета пригодна для жизни.
Как мы помним из уроков географии, Земля состоит из различных слоев. Чем дальше к центру планеты, тем обстановка все больше накаляется. К счастью для нас, на коре, самом верхнем геологическом слое, температура относительно стабильная и комфортная. Однако ее значения могут сильно меняться в зависимости от места и времени.
© Johan Swanepoel | shutterstock.com
Структура Земли
Как и другие планеты земной группы, наша планета состоит из силикатных пород и металлов, которые дифференцируются между твердым металлическим ядром, расплавленным внешним ядром, силикатной мантией и корой. Внутреннее ядро имеет примерный радиус 1220 км, а внешнее около 3400 км.
Затем следуют мантия и земная кора. Толщина мантии составляет 2890 км. Это самый толстый слой Земли. Она состоит из силикатных пород, богатых железом и магнием. Высокие температуры внутри мантии делают твердый силикатный материал достаточно пластичным.
Верхний слой мантии разделен на литосферу и астеносферу. Первая состоит из коры и холодной жесткой верхней части мантии, в то время как астеносфера обладает некоторой пластичностью, из-за чего покрывающая ее литосфера неустойчива и подвижна.
Земная кора
Кора является внешней оболочкой Земли и составляет лишь 1 % от ее общей массы. Толщина коры меняется в зависимости от места. На континентах она может достигать 30 км, а под океанами всего 5 км.
Оболочка состоит из множества магматических, метаморфических и осадочных пород и представлена системой тектонических плит. Эти плиты плавают над мантией Земли, и, предположительно, конвекция в мантии приводит к тому, что они находятся в постоянном движении.
Иногда тектонические плиты сталкиваются, расходятся или скользят друг о друга. Все три типа тектонической активности лежат в основе формирования земной коры и приводят к периодическому обновлению ее поверхности в течение миллионов лет.
Диапазон температуры
На внешнем слое коры, где она соприкасается с атмосферой, ее температура совпадает с температурой воздуха. Таким образом, она может нагреваться до 35 °C в пустыне и быть ниже нуля в Антарктиде. В среднем температура поверхности коры составляет около 14 °C.
Как видно, диапазон значений довольно широк. Но стоит учесть тот факт, что большая часть земной коры лежит под океанами. Вдали от солнца, где она встречается с водой, температура может составлять лишь 0…+3 °C.
Если же начать копать яму в континентальной коре, то температура будет заметно возрастать. Например, внизу самой глубокой в мире шахты «Тау-Тона» (3,9 км) в Южной Африке она достигает 55 °C. Шахтерам, работающим там весь день, не обойтись без кондиционера.
Таким образом, средняя температура поверхности может варьироваться от изнуряющей знойной до люто морозной в зависимости от местоположения (на суше или под водой), времен года и времени суток.
И все же земная кора остается единственным местом в Солнечной системе, где температура достаточно стабильна, чтобы жизнь на ней продолжала процветать. Добавьте к этому нашу жизнеспособную атмосферу и защитную магнитосферу, и вы поймете, что нам действительно крупно повезло!
Исследование опубликовано в издании Universe Today.
континентальной коры | Состав, плотность и факты
Состав
Континентальная кора имеет в целом гранитный состав и, с плотностью около 2,7 грамма на кубический см, несколько легче океанической коры, которая является базальтовой (т. Е. Более богатой железом и магнием, чем гранит) по составу и имеет плотность примерно от 2,9 до 3 граммов на кубический см. Континентальная кора обычно имеет толщину 40 км (25 миль), в то время как океаническая кора намного тоньше, в среднем около 6 км (4 миль).
Влияние различной плотности литосферных пород можно увидеть на разных средних отметках континентальной и океанической коры. Менее плотная континентальная кора обладает большей плавучестью, из-за чего она плавает намного выше в мантии. Его средняя высота над уровнем моря составляет 840 метров (2750 футов), а средняя глубина океанической коры составляет 3790 метров (12 400 футов). Эта разница в плотности создает два основных уровня поверхности Земли.
Формация
Континентальная кора формируется в основном в зонах субдукции.Боковой рост происходит за счет добавления горных пород, соскобленных с вершины океанических плит, когда они погружаются под континентальные окраины (подводный край континентальной коры). Эти окраины отмечены линиями вулканов, часто в вулканических дугах, которые образуют надстройки земной коры. Зоны субдукции, расположенные в океанских бассейнах (где одна океаническая плита опускается под другую), также образуют вулканические дуги, называемые островными дугами. Островные дуги состоят из материалов, которые варьируются от океанической до континентальной коры как по толщине, так и по составу.Первые континенты, по-видимому, образовались в результате аккреции различных островных дуг.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Есть также свидетельства того, что континентальная кора сформировалась в результате аккреционного процесса, известного как реламинирование. Когда океаническая плита погружается под континентальную плиту, она увлекает за собой осадки океанского дна, магму и более крупные скопления горных пород. По мере увеличения давления и температуры с глубиной породы плавятся, и более плотный материал внутри нисходящей океанической плиты продолжает опускаться вниз, в то время как менее концентрированный богатый кремнеземом материал образует гранулиты, которые прилипают к дну континентальной плиты и увеличивают ее массу.
Редакторы Британской энциклопедии
корок | Национальное географическое общество
«Кора» описывает внешнюю оболочку планеты земного типа. Тонкая кора нашей планеты глубиной 40 километров (25 миль) — всего 1% массы Земли — содержит всю известную жизнь во Вселенной.
Земля состоит из трех слоев: коры, мантии и ядра. Кора состоит из твердых пород и минералов. Под корой находится мантия, которая также в основном состоит из твердых пород и минералов, но перемежается пластичными областями полутвердой магмы.В центре Земли находится горячее плотное металлическое ядро.
Слои Земли постоянно взаимодействуют друг с другом, а кора и верхняя часть мантии являются частью единой геологической единицы, называемой литосферой. Глубина литосферы варьируется, и разрыв Мохоровича (Мохо) — граница между мантией и корой — не существует на одинаковой глубине. Изостази описывает физические, химические и механические различия между мантией и корой, которые позволяют коре «плавать» на более податливой мантии.Не все регионы Земли находятся в изостатическом равновесии. Изостатическое равновесие зависит от плотности и толщины коры, а также от динамических сил, действующих в мантии.
Так же, как меняется глубина корки, меняется и ее температура. Верхняя кора выдерживает температуру окружающей среды или океана — жарко в засушливых пустынях и замерзает в океанических желобах. Рядом с Мохо температура коры колеблется от 200 ° по Цельсию (392 ° по Фаренгейту) до 400 ° по Цельсию (752 ° по Фаренгейту).
Создание корки
Миллиарды лет назад планетарная капля, которая стала Землей, возникла как горячий вязкий каменный шар. Самый тяжелый материал, в основном железо и никель, опустился к центру новой планеты и стал ее ядром. Расплавленный материал, окружавший ядро, был ранней мантией.
За миллионы лет мантия остыла. Вода, задержанная внутри минералов, извергалась лавой, этот процесс называется «дегазация».По мере того, как выделялось все больше воды, мантия затвердевала. Материалы, которые изначально оставались в жидкой фазе во время этого процесса, называемые «несовместимыми элементами», в конечном итоге стали хрупкой корой Земли.
От ила и глины до алмазов и угля — земная кора состоит из магматических, метаморфических и осадочных пород. Наиболее распространенные породы в коре — магматические, образованные в результате охлаждения магмы. Земная кора богата магматическими породами, такими как гранит и базальт. Метаморфические породы претерпели резкие изменения из-за тепла и давления.Сланец и мрамор — знакомые метаморфические породы. Осадочные породы образуются в результате накопления материала на поверхности Земли. Песчаник и сланец — это осадочные породы.
Динамические геологические силы создали земную кору, и кора продолжает формироваться под действием движения и энергии планеты. Сегодня тектоническая активность ответственна за формирование (и разрушение) материалов земной коры.
Земная кора делится на два типа: океаническая кора и континентальная кора.Переходную зону между этими двумя типами коры иногда называют разрывом Конрада. Силикаты (в основном соединения, состоящие из кремния и кислорода) являются наиболее распространенными породами и минералами как в океанической, так и в континентальной коре.
Океаническая кора
Океаническая кора, простирающаяся на 5-10 километров (3-6 километров) под дном океана, в основном состоит из различных типов базальтов. Геологи часто называют породы океанической коры «сима».«Сима» означает силикаты и магний, самые распространенные минералы в океанической коре. (Базальты — это похожие на скалы.) Океаническая кора плотная, почти 3 грамма на кубический сантиметр (1,7 унции на кубический дюйм).
Океаническая кора постоянно образуется на срединно-океанических хребтах, где тектонические плиты разрываются друг от друга. Когда магма, которая поднимается из этих трещин на поверхности Земли, остывает, она становится молодой океанической корой. Возраст и плотность океанической коры увеличивается по мере удаления от срединно-океанических хребтов.
Подобно тому, как океаническая кора образуется на срединно-океанических хребтах, она разрушается в зонах субдукции. Субдукция — важный геологический процесс, при котором тектоническая плита, состоящая из плотного литосферного материала, плавится или опускается ниже плиты, состоящей из менее плотной литосферы на границе сходящейся плиты.
На конвергентных границах плит между континентальной и океанической литосферой плотная океаническая литосфера (включая кору) всегда погружается под континентальную.Например, на северо-западе США океаническая плита Хуан-де-Фука погружается под континентальную Северо-Американскую плиту. На сходящихся границах между двумя плитами, несущими океаническую литосферу, более плотный (обычно более крупный и глубокий океанский бассейн) субдуцируется. В Японском желобе плотная Тихоокеанская плита погружается под менее плотную Охотскую плиту.
По мере того как литосфера погружается в мантию, она становится более пластичной и пластичной. Благодаря мантийной конвекции богатые минералы мантии могут быть в конечном итоге «переработаны», когда они всплывают на поверхность в виде лавы, образующей корку, на срединно-океанических хребтах и вулканах.
Во многом из-за субдукции океаническая кора намного моложе континентальной коры. Самая старая существующая океаническая кора находится в Ионическом море, части восточного Средиземноморского бассейна. Дну Ионического моря около 270 миллионов лет. (С другой стороны, самым старым частям континентальной коры более 4 миллиардов лет.)
Геологи собирают образцы океанической коры путем бурения на дне океана, с помощью подводных аппаратов и изучения офиолитов.Офиолиты — это участки океанической коры, которые поднялись над уровнем моря в результате тектонической активности, иногда появляясь как дайки в континентальной коре. Офиолиты часто более доступны для ученых, чем океаническая кора на дне океана.
Континентальная кора
Континентальная кора в основном состоит из разных типов гранитов. Геологи часто называют породы континентальной коры «сиальными». Сиал означает силикат и алюминий, самые распространенные минералы в континентальной коре.Сиал может быть намного толще, чем сима (толщиной до 70 километров (44 мили)), но также немного менее плотным (около 2,7 грамма на кубический сантиметр (1,6 унции на кубический дюйм)).
Как и океаническая кора, континентальная кора образована тектоникой плит. На границах сходящихся плит, где тектонические плиты сталкиваются друг с другом, континентальная кора поднимается вверх в процессе горообразования или горообразования. По этой причине самые толстые части континентальной коры находятся на самых высоких горных хребтах мира.Как и айсберги, высокие пики Гималаев и Анд являются лишь частью континентальной коры региона — кора неравномерно простирается под Землей, а также взлетает в атмосферу.
Кратоны — самая старая и стабильная часть континентальной литосферы. Эти части континентальной коры обычно находятся глубоко внутри большинства континентов. Кратоны делятся на две категории. Щиты — это кратоны, в которых древняя скала из фундамента выходит в атмосферу.Платформы — это кратоны, в которых порода фундамента погребена под вышележащими отложениями. И щиты, и платформы предоставляют геологам важную информацию о ранней истории и формировании Земли.
Континентальная кора почти всегда намного старше океанической. Поскольку континентальная кора редко разрушается и повторно используется в процессе субдукции, некоторые участки континентальной коры почти так же стары, как сама Земля.
Инопланетная кора
Другие планеты земной группы нашей солнечной системы (Меркурий, Венера и Марс) и даже наша собственная Луна имеют корки.Как и Земля, эти внеземные корки образованы в основном силикатными минералами. Однако, в отличие от Земли, корки этих небесных тел не сформированы взаимодействием тектонических плит.
Несмотря на меньшие размеры Луны, лунная кора толще земной. Лунная кора не имеет однородной толщины и обычно имеет тенденцию быть толще на «дальней стороне», которая всегда обращена от Земли.
Хотя считается, что Меркурий, Венера и Марс не имеют тектонических плит, у них действительно есть динамическая геология.У Венеры, например, есть частично расплавленная мантия, но в коре Венеры не хватает воды, удерживаемой в ловушках, чтобы сделать ее такой же динамичной, как земная кора.
Между тем кора Марса представляет собой самые высокие горы в Солнечной системе. Эти горы на самом деле представляют собой потухшие вулканы, образовавшиеся в результате извержения расплавленной породы в одном и том же месте на поверхности Марса в течение миллионов лет. В результате извержений образовались огромные горы из богатых железом магматических пород, которые придают марсианской коре характерный красный оттенок.
Одна из самых вулканических корок в Солнечной системе — это корка спутника Юпитера Ио. Богатые сульфидные породы в ионической коре окрашивают Луну в пятнистую коллекцию желтых, зеленых, красных, черных и белых тонов.
Inside the Earth [This Dynamic Earth, USGS]
Inside the Earth [This Dynamic Earth, USGS]
Внутри Земли
Размер Земли — около 12750 километров в диаметре — был известен.
древними греками, но только на рубеже 20-го века
что ученые определили, что наша планета состоит из трех основных слоев:
кора, мантия, и ядро. Эту слоистую структуру можно сравнить
к вареному яйцу. Корка , крайний слой , жесткая.
и очень тонкий по сравнению с двумя другими. Под океанами корка
мало меняется по толщине, обычно простираясь только до 5 км. В
толщина коры под континентами гораздо более изменчива, но в среднем
около 30 км; под большими горными хребтами, такими как Альпы или Сьерра
В Неваде, однако, основание земной коры может достигать 100 км.Как
скорлупа яйца, земная кора хрупкая и может сломаться.
Виды в разрезе, показывающие внутреннее строение Земли. Ниже: Это
вид, выполненный в масштабе, показывает, что земная кора буквально только
кожа глубоко. Внизу справа: изображение, нарисованное не в масштабе, чтобы показать три Земли.
подробнее основные слои (кора, мантия, ядро) (см. текст).
Под корой находится мантия , плотный горячий слой полутвердой породы
толщиной примерно 2900 км.Мантия, в которой больше железа, магния,
и кальций, чем корка, горячее и плотнее, потому что температура и
давление внутри Земли увеличивается с глубиной. Для сравнения, мантия
можно представить себе как белок вареного яйца. В центре Земли
находится ядро , которое почти вдвое плотнее мантии, потому что
его состав скорее металлический (железо-никелевый сплав), чем каменистый. в отличие
желток яйца, однако ядро Земли на самом деле состоит из двух
отдельные части: жидкое внешнее ядро толщиной 2200 км и 1250 км
твердая внутренняя сердцевина.Когда Земля вращается, жидкое внешнее ядро вращается,
создание магнитного поля Земли.
Неудивительно, что внутренняя структура Земли влияет на тектонику плит.
Верхняя часть мантии холоднее и жестче, чем глубокая;
во многом он ведет себя как вышележащая кора. Вместе они образуют
твердый слой породы, называемый литосферой (от lithos, греч.
для камня). Литосфера обычно тоньше всего под океанами и в
вулканически активные континентальные области, такие как запад США.Толщина литосферы на большей части Земли составляет не менее 80 км.
был разбит на движущиеся плиты, которые содержат континенты мира
и океаны. Ученые считают, что под литосферой находится относительно
узкая подвижная зона в мантии, называемая астеносферой (от
астен, греческий для слабого). Эта зона состоит из горячих полутвердых
материал, который может размягчаться и растекаться после воздействия высокой температуры
и давление на геологическое время.Считается, что жесткая литосфера «плавает».
или двигайтесь по медленно текущей астеносфере.
«Исторический
перспектива»
URL: https://pubs.usgs.gov/publications/text/inside.html
Последнее обновление: 05.05.99
Контакты: [email protected]
3.2 Строение Земли — Введение в океанографию
В предыдущем разделе мы узнали, что материалы на ранней Земле сортировались в процессе дифференциации: более плотные материалы, такие как железо и никель, опускались к центру, а более легкие материалы (кислород, кремний, магний) оставались вблизи поверхности.В результате Земля состоит из слоев разного состава и плотности, возрастающей по мере продвижения от поверхности к центру (рис. 3.2.1).
Рисунок 3.2.1. Внутренняя структура Земли (Автор Kelvinsong (собственная работа) [CC BY-SA 3.0], через Wikimedia Commons).
Традиционный вид, основанный на химическом составе, распознает четыре отдельных слоя:
Внутреннее ядро находится в центре Земли и имеет толщину около 1200 км. Он состоит в основном из сплавов железа и никеля, примерно на 10% состоит из кислорода, серы или водорода.Температура во внутреннем ядре составляет около 6000 ° ° C (10800 ° ° F), что примерно соответствует температуре поверхности Солнца (в разделе 3.1 объясняются источники этого сильного тепла). Несмотря на высокую температуру, которая должна расплавить эти металлы, экстремальное давление (буквально от веса мира) удерживает внутреннее ядро в твердой фазе. Твердые металлы также делают внутреннее ядро очень плотным, около 17 г / см 3 , что дает внутреннему ядру около одной трети общей массы Земли.
Внешний сердечник находится вне внутреннего сердечника. Он имеет тот же состав, что и внутреннее ядро, но существует в виде жидкости, а не твердого тела. Температура 4000-6000 o C, а металлы остаются в жидком состоянии, потому что давление не такое большое, как во внутреннем ядре. Это движение жидкого железа во внешнем ядре, которое создает магнитное поле Земли (см. Раздел 4.2). Внешнее ядро имеет толщину 2300 км и плотность 12 г / см 3 .
Мантия простирается от внешнего ядра до поверхности Земли. Его толщина 2900 км, и он составляет около 80% объема Земли. Мантия состоит из силикатов железа и магния и оксидов магния, поэтому она больше похожа на породы на поверхности Земли, чем на материалы ядра. Плотность мантии составляет 4,5 г / см 3 , а температура находится в диапазоне 1000-1500 o C. Самый верхний слой мантии более жесткий, в то время как более глубокие области являются жидкими, и это движение жидких материалов в мантии, ответственной за тектонику плит (см. раздел 4.3). Магма, которая поднимается на поверхность через вулканы, берет свое начало в мантии.
Самый внешний слой — это кора , которая образует твердую каменистую поверхность Земли. Толщина коры в среднем составляет 15-20 км, но в некоторых местах, например под горами, толщина коры может достигать 100 км. Есть два основных типа корочки; континентальная кора и океаническая кора , которые различаются по ряду причин. Континентальная кора толще океанической коры, в среднем 20-70 км по сравнению с 5-10 км для океанической коры.Континентальная кора менее плотная, чем океаническая (2,7 г / см 3 против 3 г / см 3 ), и она намного старше. Возраст самых старых горных пород в континентальной коре составляет около 4,4 миллиарда лет, в то время как возраст самой старой океанической коры составляет всего 180 миллионов лет. Наконец, два типа корки различаются по своему составу. Континентальная кора состоит в основном из гранита. Это связано с тем, что подземные или поверхностные магмы могут медленно остывать, что дает время для формирования кристаллических структур до того, как породы затвердеют, что приведет к образованию гранита.Океаническая кора в основном состоит из базальтов. Базальты также образуются из охлаждающих магм, но они охлаждаются в присутствии воды, что заставляет их остывать намного быстрее и не дает времени для образования кристаллов.
Основываясь на физических характеристиках, мы также можем разделить самые внешние слои Земли на литосферу и астеносферу . Литосфера состоит из коры и холодной твердой внешней 80-100 км мантии. Кора и внешняя мантия движутся вместе как единое целое, поэтому они объединяются в литосферу.Астеносфера лежит ниже литосферы, на глубине от примерно 100-200 км до примерно 670 км. Он включает более «пластичную» и более мягкую область мантии, где могут происходить жидкие движения. Таким образом, твердая литосфера плавает в жидкой астеносфере.
Изостази
Чтобы объяснить, как литосфера плавает в астеносфере, нам нужно изучить концепцию изостазии . Изостазия относится к способу плавания твердого тела в жидкости. Взаимосвязь между корой и мантией проиллюстрирована на рисунке 3.2.2. Справа — пример неизостатического отношения между плотом и твердым бетоном. Можно нагружать плот большим количеством людей, и он все равно не утонет в бетоне. Слева изостатическая связь между двумя разными плотами и бассейном, полным арахисового масла. С одним человеком на борту плот плывет высоко в арахисовом масле, но с тремя людьми он опускается опасно низко. Здесь мы используем арахисовое масло, а не воду, потому что его вязкость более точно отражает взаимосвязь между коркой и мантией.Хотя его плотность примерно такая же, как у воды, арахисовое масло гораздо более вязкое (жесткое), и поэтому, хотя плот из трех человек будет погружаться в арахисовое масло, он будет делать это довольно медленно.
Рисунок 3.2.2. Демонстрация изостазии (Стивен Эрл, «Физическая геология»).
Отношение земной коры к мантии аналогично отношению плотов к арахисовому маслу. Плот с одним человеком плывет удобно высоко. Даже с тремя людьми плот менее плотен, чем арахисовое масло, поэтому он плавает, но для этих трех человек он плавает слишком низко.Кора со средней плотностью около 2,6 грамма на кубический сантиметр (г / см 3 ) менее плотная, чем мантия (средняя плотность около 3,4 г / см 3 у поверхности, но больше, чем у поверхности. глубина), и поэтому он плавает на «пластиковой» мантии. Когда к коре добавляется больше веса в процессе горообразования, она медленно погружается все глубже в мантию, и мантийный материал, который там был, отодвигается (рис. 3.2.3, слева). Когда этот вес снимается за счет эрозии в течение десятков миллионов лет, кора отталкивается, и мантийная порода течет обратно (рис.2.3, справа).
Рис. 3.2.3. Изостатический отскок при удалении массы из коры (Стивен Эрл, «Физическая геология»).
Кора и мантия аналогично реагируют на оледенение. Толстые скопления ледникового льда добавляют вес коре, и по мере того, как нижняя мантия сжимается в стороны, кора опускается. Когда лед в конце концов тает, кора и мантия будут медленно восстанавливаться, но полное восстановление, вероятно, займет более 10 000 лет. Большая часть Канады все еще восстанавливается в результате потери ледникового льда за последние 12000 лет, как показано на Рисунке 3.2.4, в других частях света также наблюдается изостатический отскок. Наибольшая скорость подъема наблюдается на большой территории к западу от Гудзонова залива, где ледяной щит Лаурентиды был самым толстым (более 3000 м). Лед окончательно покинул этот регион около 8000 лет назад, и в настоящее время кора восстанавливается со скоростью почти 2 см / год.
Рисунок 3.2.4. Глобальные скорости изостатической корректировки (Стивен Эрл, «Физическая геология»).
Поскольку континентальная кора толще, чем кора океана, она будет плавать выше и проникать в мантию глубже, чем кора океана.Корка наиболее толстая там, где есть горы, поэтому Мохо будет глубже под горами, чем под океанической корой. Поскольку океаническая кора также более плотная, чем континентальная кора, она плавает ниже по мантии. Поскольку океаническая кора лежит ниже континентальной, и поскольку вода течет вниз, достигая самой нижней точки, это объясняет, почему вода накапливалась над океанической корой, образуя океаны.
Рис. 3.2.5. Более тонкая и плотная океаническая кора плавает ниже по мантии, чем более толстая и менее плотная континентальная кора (Стивен Эрл, «Физическая геология»).
* «Физическая геология» Стивена Эрла используется в соответствии с международной лицензией CC-BY 4.0. Загрузите эту книгу бесплатно по адресу http://open.bccampus.ca
.
Урок №1 о слоях Земли | Мир вулканов
Четыре слоя
Земля состоит из четырех разных слоев. Многие геологи полагают, что по мере охлаждения Земли более тяжелые и плотные материалы опускались к центру, а более легкие поднимались наверх. Из-за этого кора состоит из самых легких материалов (горных пород, базальтов и гранитов), а ядро состоит из тяжелых металлов (никеля и железа).
Кора — это слой, на котором вы живете, и он наиболее широко изучен и понят. Мантия намного горячее и обладает способностью течь. Внешнее и внутреннее ядра еще горячее, а давление настолько велико, что вы были бы сжаты в шар размером меньше шарика, если бы вы смогли добраться до центра Земли !!!!!!
Корка
Земная кора подобна кожуре яблока.Он очень тонкий по сравнению с тремя другими слоями. Кора имеет толщину всего около 3-5 миль (8 км) под океанами (океаническая кора) и около 25 миль (32 км) под континентами (континентальная кора). Температура земной коры варьируется от температуры воздуха наверху до примерно 1600 градусов по Фаренгейту (870 градусов по Цельсию) в самых глубоких частях земной коры. Вы можете испечь буханку хлеба в духовке при температуре 350 градусов по Фаренгейту, при температуре 1600 градусов по Фаренгейту камни начинают таять.
Кора Земли разбита на множество частей, называемых плитами.Пластины «плавают» на мягкой пластиковой мантии, расположенной ниже корки. Эти пластины обычно движутся плавно, но иногда они заедают и создают давление. Давление нарастает, и камень изгибается, пока не сломается. Когда это происходит, результатом является землетрясение!
Обратите внимание, насколько тонка кора Земли по сравнению с другими слоями. Семь континентов и океанические плиты в основном плавают через мантию, которая состоит из более горячего и плотного материала.
Кора состоит из двух основных типов горных пород — гранита и базальта. Континентальная кора сложена преимущественно гранитом. Океаническая кора состоит из вулканической лавы, называемой базальтом.
Базальтовые породы океанических плит намного плотнее и тяжелее гранитных пород континентальных плит. Из-за этого континенты движутся по более плотным океаническим плитам. Кора и верхний слой мантии вместе составляют зону твердой, хрупкой породы, называемую литосферой.Слой ниже жесткой литосферы представляет собой зону асфальтоподобной консистенции, называемую астеносферой. Астеносфера — это часть мантии, которая течет и перемещает плиты Земли.
Мантия
Мантия — это слой, расположенный непосредственно под симой. Это самый большой слой Земли, его толщина составляет 1800 миль. Мантия состоит из очень горячей плотной породы. Этот слой камня даже течет, как асфальт, под тяжелым грузом.Это течение связано с большими перепадами температур от низа до верха мантии. Движение мантии — причина движения плит Земли! Температура мантии колеблется от 1600 градусов по Фаренгейту вверху до примерно 4000 градусов по Фаренгейту внизу!
Конвекционные токи
Мантия сделана из гораздо более плотного и толстого материала, из-за чего пластины «плавают» на ней, как масло на воде.
Многие геологи считают, что мантия «течет» из-за конвективных течений. Конвекционные токи вызваны тем, что очень горячий материал в самой глубокой части мантии поднимается, затем охлаждается, снова опускается, а затем нагревается, поднимается и повторяет цикл снова и снова. В следующий раз, когда вы разогреете на сковороде что-нибудь вроде супа или пудинга, вы сможете наблюдать, как в жидкости движутся конвекционные потоки. Когда конвекционные потоки текут в мантии, они также перемещают кору. Эти токи позволяют корке свободно перемещаться по ней.Конвейерная лента на фабрике перемещает коробки, как конвекционные потоки в мантии перемещают плиты Земли.
Наружное ядро
Ядро Земли похоже на шар из очень горячих металлов. (От 4000 градусов по Фаренгейту до 9000 градусов по Фаренгейту). Внешнее ядро настолько горячее, что все металлы в нем находятся в жидком состоянии. Внешнее ядро расположено примерно на 1800 миль под земной корой и имеет толщину около 1400 миль.Внешний сердечник состоит из расплавленных металлов никеля и железа.
Внутреннее ядро
Внутреннее ядро Земли имеет настолько высокие температуры и давление, что металлы сжимаются вместе и не могут двигаться, как жидкость, а вынуждены колебаться на месте как твердое тело. Внутреннее ядро начинается примерно на 4000 миль под земной корой и имеет толщину около 800 миль. Температура может достигать 9000 градусов по Фаренгейту.и давление составляет 45 000 000 фунтов на квадратный дюйм. Это в 3 000 000 раз больше атмосферного давления для вас на уровне моря !!!
Ответьте вместе с партнером на следующие вопросы на листе бумаги. Если вам нужно оглянуться назад, чтобы найти ответы, используйте заголовки страниц, расположенные непосредственно под вопросами, чтобы помочь вам. Когда вы закончите вопросы, нажмите на значок Земли, чтобы вернуть программу к началу.
1.Назовите четыре слоя Земли в порядке извне к центру Земли.
2. Что заставляет мантию «течь»?
3. Какие два основных металла составляют внешнее и внутреннее ядро?
4. Опишите своими словами, как формировались слои Земли. «Четыре слоя» вам поможет.
Что скрывается под земной корой
Слои Земли дают геологам и геофизикам подсказки о том, как образовалась Земля, слои, из которых состоят другие планетные тела, источник ресурсов Земли и многое другое.Современные достижения позволили ученым изучить то, что лежит у нас под ногами, более подробно, чем когда-либо прежде, но все еще остаются значительные пробелы в нашем понимании.
Я надеюсь, что это руководство проведет вас по слоям Земли, даст общее представление о нашем понимании и наших текущих пробелах. Имейте в виду, что это область текущих исследований и, вероятно, в ближайшие годы и десятилетия она станет более усовершенствованной.
На втором году обучения в Эдинбурге [1826-27] я посетил лекции Джеймсона по геологии и зоологии, но они были невероятно скучными.Единственный эффект, который они произвели на меня, — это решимость ни разу за всю мою жизнь прочесть книгу по геологии. — Чарльз Дарвин
Слои Земли
Земля имеет слои, похожие на слои лука, и их можно разрезать, чтобы понять физические и химические свойства каждого слоя и его влияние на остальную часть Земли. Вообще говоря, Земля имеет 4 слоя:
- Внешняя кора , на которой мы живем
- Пластиковая мантия
- Жидкость внешняя сердцевина
- Твердое внутреннее ядро
При разграничении слоев геологи делят подразделения на две категории, реологические или химические.Реологическая дифференциация говорит о жидком состоянии горных пород при огромном давлении и температуре. Например, горная порода будет совершенно иначе реагировать на деформацию при нормальных атмосферных температурах и давлениях по сравнению с менее чем тысячами километров породы. Если мы разделим Землю на части на основе реологии, мы увидим литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. Однако, если мы дифференцируем слои на основе химических вариаций, мы объединяем слои в кору, мантию, внешнее ядро и внутреннее ядро.
Чтобы понять разницу в различных частях мантии или внешнего и внутреннего ядра, вы должны понимать фазовые диаграммы, о которых я расскажу ниже.
Земная кора
Кора — это то, чем мы живем, и она, безусловно, самый тонкий из слоев земли. Толщина варьируется в зависимости от того, где вы находитесь на Земле: океаническая кора составляет 5-10 км, а континентальные горные хребты — до 30-45 км. Тонкая океаническая кора более плотная, чем более толстая континентальная кора, и поэтому «плавает» ниже в мантии по сравнению с континентальной корой.Вы найдете самую тонкую океаническую кору вдоль срединно-океанических хребтов, где активно формируется новая кора. Для сравнения, когда два континента сталкиваются, как в случае Индийской плиты и Евразийской плиты, вы получаете одни из самых толстых участков коры, поскольку она скомкана.
Температура земной коры будет варьироваться от температуры воздуха на поверхности до примерно 870 градусов Цельсия на более глубоких участках. При этой температуре вы начинаете плавить породу и формировать нижележащую мантию.Геологи подразделяют земную кору на разные плиты, которые перемещаются относительно друг друга.
Учитывая, что поверхность Земли в основном постоянна по площади, вы не можете образовать кору, не разрушив сопоставимое количество коры. С конвекцией нижележащей мантии мы видим внедрение мантийной магмы вдоль срединно-океанических хребтов, постоянно формируя новую океаническую кору. Однако, чтобы освободить место для этого, океаническая кора должна поглотить (опуститься ниже) континентальную кору. Геологи тщательно изучили историю этого движения плит, но нам крайне не хватает определения того, почему и как эти плиты движутся так, как они это делают.
Земная кора «плавает» поверх мягкой пластмассовой мантии внизу. В некоторых случаях мантия явно вызывает изменения в коре, как на Гавайских островах. Тем не менее, продолжаются дискуссии о том, происходит ли субдукция океанической коры и спрединг срединных океанических хребтов за счет толкающего или тянущего механизма.
В очень широком смысле, океаническая кора состоит из базальта, а континентальная кора состоит из горных пород, похожих на гранит.Ниже коры находится твердая относительно более холодная часть верхней мантии, которая объединяется с корой, образуя слой литосферы . Литосфера физически отличается от нижележащих слоев из-за низких температур и обычно простирается на 70-100 км в глубину.
Ниже литосферы находится слой астеносферы , гораздо более горячая и податливая часть верхней мантии. Астеносфера начинается в нижней части литосферы и простирается примерно на 700 км вглубь Земли.Астеносфера действует как смазывающий слой под литосферой, который позволяет литосфере перемещаться по поверхности Земли.
Мантия Земли
Мантия — это слой земли, который находится под корой и является самым большим слоем, составляющим 84% объема Земли. Мантия начинается у разрыва Мохоровичич, также известного как Мохо. Мохо определяется как контраст плотности от менее плотной коры к более плотной мантии и где скорости сейсмических волн увеличиваются.Мантия действует подобно пластику, и при очень высоких температурах и давлениях порода деформируется в геологических временных масштабах. Эта деформация вызывает процесс, похожий на конвекцию, в мантии, где есть большие зоны апвеллинга и даунвеллинга.
Мантия простирается на 2 890 км вглубь поверхности Земли. Температура колеблется от 500 до 900 градусов Цельсия в верхней части до более 4000 градусов Цельсия у границы ядра. Считается, что мантия Земли состоит из минералов, аналогичных перидотиту.Перидотит драгоценного качества называется перидотом, поэтому в следующий раз, когда вы окажетесь в ювелирном магазине, взгляните на перидот, и вы увидите что-то похожее на 84% Земли!
Видео выше дает представление о глобальной циркуляции мантийной магмы вокруг Земли. Конечно, это сильно упрощено, но дает схематическое представление о процессе создания срединно-океанических хребтов, вулканов и гор.
Внешнее ядро Земли
Внешнее ядро - это жидкий, в основном, железный слой земли, лежащий под мантией.Геологи подтвердили, что внешнее ядро жидкое из-за сейсмических исследований недр Земли. Внешнее ядро имеет толщину 2300 км и опускается примерно на 3400 км вглубь Земли. Никто никогда не видел внешнее ядро, но, основываясь на ряде показателей, геологи полагают, что внешнее ядро на 80% состоит из железа, немного никеля и ряда различных более легких элементов. Когда Земля только начинала охлаждаться миллиарды лет назад, более тяжелые элементы погружались в центр Земли, а менее плотные элементы поднимались на поверхность.Следовательно, мы видим общее увеличение плотности по мере приближения к центру Земли.
Внешнее ядро достаточно горячее, чтобы его расплавить, но давление недостаточно, чтобы железо снова стало твердым, как это видно на внутреннем ядре. Температура внешнего ядра колеблется от 4030 до 5730 градусов по Цельсию. Удивительно, но внешнее ядро достаточно жидкое и имеет достаточно низкую вязкость, чтобы вращаться быстрее, чем вся Земля. Эта дифференциальная скорость вращения вместе с конвекцией и турбулентным потоком внешнего ядра из железа создает магнитное поле Земли.
Внутреннее ядро Земли
Внутреннее ядро - это центральный слой Земли, во многом похожее на внешнее ядро. Он также в основном состоит из железа и никеля и имеет радиус около 1220 км. Различие между внешним ядром и внутренним ядром определяется плотностью. Давление становится достаточно высоким, чтобы, несмотря на очень высокие температуры, внутреннее ядро оставалось твердым. Он также обогащен необычными тяжелыми элементами, включая золото, серебро, платину, палладий и вольфрам.
Температура достигает 5400 градусов Цельсия, а давление — 360 гигапаскалей. Внутреннее ядро составляет около 70% радиуса Луны и имеет примерно такую же температуру, как поверхность Солнца! Теперь давайте ответим на некоторые часто задаваемые вопросы, если вы ищете быстрые ответы.
Часто задаваемые вопросы о слоях Земли
- Что такое внешний слой Земли?
- Внешний слой Земли — это кора , твердый тонкий слой, состоящий из континентальной и океанической коры.
- Каковы разные части Земли?
- Различные части Земли — кора, мантия, внешнее ядро и внутреннее ядро.
- Сколько слоев на Земле?
- Вообще говоря, на Земле 4 слоя. Однако это зависит от того, как вы измеряете каждый слой, исходя из физических или химических свойств.
- Какова глубина внутреннего ядра Земли?
- Внутреннее ядро Земли начинается на расстоянии 5150 км от поверхности Земли и простирается до центра Земли.
- Какие материалы составляют внутреннее ядро?
- Внутреннее ядро состоит в основном из железа на 80% и никеля, а также из следовых количеств тяжелых металлов.
- Какова глубина земной коры?
- Земная кора колеблется от 5 до 60 километров в зависимости от океанической коры по сравнению с континентальной
- Какие два типа земной коры?
- Два типа коры: плотная и тонкая океаническая кора и менее плотная и более толстая континентальная кора.
Надеюсь, вам понравился этот путеводитель по слоям Земли, и он пробудил новый интерес к тому, что лежит у нас под ногами!
Количественная оценка толщины земной коры в континентальных коллизионных поясах: глобальная перспектива и геологическое применение
Ласке, Г., Мастерс, Г., Ма, З. и Пасьянос, М. Обновление CRUST1.0 — 1-градусный Глобальная модель земной коры, Geophys. Res. Рефераты 15, http: //meetingorganizer.copernicus.org / EGU2013 / EGU2013-2658.pdf (2013).
Leeman, W. P. Влияние структуры земной коры на состав магм, связанных с субдукцией. J. Volcanol. Геот. Res.
18 , 561–588 (1983).
ADS
CAS
Статья
Google Scholar
Планк Т. и Ленгмюр К. Х. Оценка глобальных вариаций химического состава основных элементов дуговых базальтов. Earth Planet Sc. Lett.
, 90, , 349–370 (1988).
ADS
CAS
Статья
Google Scholar
Мантл, Г. У. и Коллинз, У. Дж. Количественная оценка вариаций толщины земной коры в эволюционирующих орогенах: корреляция между составом дуговых базальтов и глубиной Мохо. Геология
36 , 87–90 (2008).
ADS
CAS
Статья
Google Scholar
Чепмен, Дж. Б., Дуче, М. Н., Профета, Л. и ДеСеллес, П. Г. Отслеживание изменений толщины земной коры во время орогенной эволюции с помощью Sr / Y; пример из западных Кордильер США. Геология
43 , 919–923 (2015).
ADS
Статья
Google Scholar
Чиарадиа, М. Контроль толщины земной коры по Sr / Y сигнатурам недавних дуговых магм: перспектива в масштабе Земли. Sci. Репутация . 5 , DOI: 10.1038 / srep08115 (2015).
Profeta, L. et al. . Количественная оценка толщины земной коры во времени в магматических дугах: Sci. Репутация . 5 , DOI: 10.1038 / srep17786 (2015).
Тернер, С. Дж. И Ленгмюр, К. Х. Глобальная химическая систематика стратовулканов дугового фронта: оценка роли земных процессов. Earth Planet Sc. Lett.
422 , 182–193 (2015).
ADS
CAS
Статья
Google Scholar
Тернер, С. Дж. И Ленгмюр, К. Х. Какие процессы влияют на химический состав стратовулканов фронтовой дуги? Geochem. Geophys. Геосист.
16 , 1865–1893, DOI: 10.1002 / 2014GC005633 (2015).
ADS
CAS
Статья
Google Scholar
Hildreth, W.И Мурбат, С. Вклад земной коры в дуговый магматизм в Андах Центрального Чили. Contrib. Минеральная. Бензин.
98, , 455–489 (1988).
ADS
CAS
Статья
Google Scholar
Аннен, К., Бланди, Дж. Д. и Спаркс, Р. С. Дж. Генезис промежуточных и кремнистых магм в глубоких горячих зонах земной коры. J. Petrol.
47 , 505–539 (2006).
CAS
Статья
Google Scholar
Lee, C.-T. А., Мортон, Д. М., Кистлер, Р. В., Бэрд, А. К. Петрология и тектоника формирования фанерозойского континента: от островных дуг до аккреции и континентального дугового магматизма. Earth Planet Sc. Lett.
263 , 370–387 (2007).
ADS
CAS
Статья
Google Scholar
Мойен, Дж. Ф. Высокие отношения Sr / Y и La / Yb: значение «адакитовой сигнатуры». Литос
112 , 556–574 (2009).
ADS
CAS
Статья
Google Scholar
Дуче М. Н., Салиби Дж. Б. и Берганц Г. Архитектура, химия и эволюция континентальных магматических дуг. Annu. Преподобный Земля Пл. Sc.
43 , 299–311 (2015).
ADS
CAS
Статья
Google Scholar
Инь А. и Харрисон Т. М. Геологическая эволюция Гималайско-Тибетского орогена. Annu. Преподобный Земля Пл. Sc.
28 , 211–280 (2000).
ADS
CAS
Статья
Google Scholar
Капп П., Инь А., Харрисон Т. М. и Динг Л. Мелово-третичное сокращение, развитие бассейнов и вулканизм в Центральном Тибете. Геол. Soc. Являюсь. Бык.
117 , 865–878 (2005).
ADS
Статья
Google Scholar
He, Y. et al. . Постколлизионные гранитоиды орогена Даби: новое свидетельство частичного плавления утолщенной континентальной коры. Геохим. Космохим. Acta.
75 , 3815–3838 (2011).
ADS
CAS
Статья
Google Scholar
Hou, Z. Q. и др. . Эоцен-олигоценовые гранитоиды в Южном Тибете: ограничения на анатексис земной коры и тектоническую эволюцию Гималайского орогена. Earth Planet Sc. Lett.
349–350 , 38–52 (2012).
Артикул
Google Scholar
Zhu, D.-C., Wang, Q., Cawood, P.A., Zhao, Z.-D. & Мо, X.-X. Поднятие гор Гангдезе в южном Тибете. Дж.Geophys. Res-Sol. Эа.
122 , 214–223 (2017).
ADS
Статья
Google Scholar
ДеСеллес, П.Г., Капп, П., Куэйд, Дж. И Герелс, Дж. Э. Олигоцен-миоценовый бассейн Кайласа, юго-западный Тибет: данные о постколлизионном расширении верхней плиты в шовной зоне Инд-Ярлунг. Геол. Soc. Являюсь. Бык.
123 , 1337–1362 (2011).
ADS
CAS
Статья
Google Scholar
Динг, Л. и др. . Гангдезские горы андского типа: палеоценовые данные по палеоцен-эоценовой котловине Линьчжоу. Earth Planet Sc. Lett.
392 , 250–264 (2014).
ADS
CAS
Статья
Google Scholar
Спайсер Р. А. и др. .Постоянное возвышение южного Тибета на протяжении последних 15 миллионов лет. Природа
421 , 622–624 (2003).
ADS
CAS
Статья
PubMed
Google Scholar
Карри Б. С., Роули Д. Б. и Табор Н. Дж. Палеоальтиметрия среднего миоцена южного Тибета: значение утолщения и расслоения мантии в орогене Гималаев. Геология
33 , 181–184 (2005).
ADS
CAS
Статья
Google Scholar
Сегеди И. и Даунс Х. Геохимия и тектоническое развитие кайнозойского магматизма в Карпатско-Паннонском регионе. Gondwana Res.
20 , 655–672 (2011).
CAS
Статья
Google Scholar
Ричардс, Дж. П. Тектоническая, магматическая и металлогеническая эволюция Тетического орогена: от субдукции к коллизии. Руда. Геол. Сборка
70 , 323–345 (2015).
MathSciNet
Статья
Google Scholar
Chung, S.-L. и др. . Тибетская тектоническая эволюция вытекает из пространственных и временных вариаций постколлизионного магматизма. Earth-Sci. Сборка
68, , 173–196 (2005).
ADS
Статья
Google Scholar
Дилек, Ю., Имамвердиев, Н., Алтункайнак,. Геохимия и тектоника кайнозойского вулканизма на Малом Кавказе (Азербайджан) и в периарабском регионе: динамика мантии, вызванная коллизиями, и ее магматический отпечаток. Внутр. Геол. Сборка
52 , 536–578 (2010).
Артикул
Google Scholar
Кескин, М. Генерация магмы за счет увеличения крутизны плиты и отрыва под субдукционно-аккреционным комплексом: альтернативная модель вулканизма, связанного с столкновениями, в Восточной Анатолии, Турция. Geophys. Res. Lett.
30 , 8046, DOI: 10.1029 / 2003GL018019 (2003).
ADS
Статья
Google Scholar
Saintot, A. et al. . Мезозойско-кайнозойская тектоническая эволюция Большого Кавказа. Геол. Soc. London Mem.
32 , 277–289, DOI: 10.1144 / gsl.mem.2006.032.01.16 (2006).
Артикул
Google Scholar
Донг Ю. П. и Сантош М. Тектоническая архитектура и множественная орогения орогенного пояса Циньлин, Центральный Китай. Gondwana Res.
29 , 1–40 (2016).
Артикул
Google Scholar
Чжан Г. У., Чжан Б. Р., Юань Х. С. и Чен Дж. Ю. Орогенный пояс Циньлин и континентальная динамика . (Science Press, Пекин, 2001).
Google Scholar
Ху, Ф. Ю., Лю, С. В., Чжан, В. Ю., Дэн, З. Б. и Чен, X. Модель распространения слэба в западном направлении для геодинамической эволюции позднетриасового орогенного пояса Циньлин: выводы из петрогенезиса интрузий Цаопин и Шахэвань, центральный Китай. Литос
262 , 486–506 (2016).
ADS
CAS
Статья
Google Scholar
Wang, X. X., Wang, T. & Zhang, C.L. Неопротерозойский, палеозойский и мезозойский гранитоидный магматизм в орогене Циньлин, Китай: ограничения на орогенный процесс. J. Asian. Земля. Sci.
72 , 129–151 (2013).
ADS
Статья
Google Scholar
Ху, Ф. Ю., Лю, С. В., Дуча, М. Н., Чжан, В. Ю. и Дэн, З. Б. Геохимическая эволюция гранитоидных пород в поясе Южный Циньлин: выводы из интрузий Дунцзянкоу и Чжашуй в центральном Китае. Литос
278–281 , 195–214 (2017).
Артикул
Google Scholar
Дэн, З. Б., Лю, С. В., Чжан, В. Ю., Ху, Ф. Ю. и Ли, К. Г. Петрогенезис гранитоидной свиты Гуантоушань, центральный Китай: последствия для раннемезозойской геодинамической эволюции орогенного пояса Циньлин. Gondwana Res.
30 , 112–131 (2016).
CAS
Статья
Google Scholar
Ли, Н., Чен, Й. Дж., Сантош, М. и Пираджно, Ф. Составная полярность триасовых гранитоидов в орогене Циньлин, Китай: значение для завершения самого северного палео-Тетиса. Gondwana Res.
27 , 244–257 (2015).
CAS
Статья
Google Scholar
Li, X. и др. . U-Pb-циркон, геохронология, геохимический и Sr-Nd-Hf-изотопный состав раннеиндозинского плутона Тонгрен в Западном Циньлине: петрогенезис и геодинамические последствия. J. Asian. Земля. Sci.
97 , 38–50 (2015).
ADS
Статья
Google Scholar
Чжан Р. Ю., Лиу Дж. Г. и Эрнст В. Г. Зона столкновения континентов Даби и Сулу: всесторонний обзор. Gondwana Res.
16 , 1–26 (2009).
Артикул
Google Scholar
Чжао, X. X. и Коу, Р.С. Палеомагнитные ограничения на столкновение и вращение Северного и Южного Китая. Природа
327 , 141–144 (1987).
ADS
Статья
Google Scholar
McDonough, W. F. & Sun, S.-S. Состав Земли. Chem. Геол.
120 , 223–253 (1995).
ADS
CAS
Статья
Google Scholar
Li, L. et al. . Развитие позднепермско-раннесреднетриасового задугового бассейна в Западном Циньлине, Китай. J. Asian. Земля. Sci.
87 , 116–129 (2014).
ADS
Статья
Google Scholar
Рапп, Р. П. и Уотсон, Э. Б. Растворимость и кинетика растворения монацита: значение для химии тория и легких редкоземельных элементов в кислых магмах. Contrib. Минеральная. Бензин.
94 , 304–316 (1986).
ADS
CAS
Статья
Google Scholar
Вольф, М. Б. и Лондон, Д. Инконгруэнтное растворение апатита, обогащенного РЗЭ и стронцием, в глиноземистых гранитных жидкостях: различная растворимость апатита, монацита и ксенотима во время анатаксиса. Am. Минеральная.
80 , 765–775 (1995).
ADS
CAS
Статья
Google Scholar
Янг, К. Х. и др. . U-Pb датирование по циркону пород гранулитовой фации из района Фопинг в южных горах Циньлин. Геол. Сборка
45 , 173–179 (1995).
Google Scholar
Цинь, Ж.-Ф. и др. . Происхождение позднетриасовых высокомагнезиальных адакитовых гранитоидов из района Дунцзянкоу, ороген Циньлин, центральный Китай: последствия для субдукции континентальной коры. Литос
120 , 347–367 (2010).
ADS
CAS
Статья
Google Scholar
Лю С. Ф., Стил Р. и Чжан Г. В. Развитие мезозойского осадочного бассейна и тектонические последствия, северный блок Янцзы, восточный Китай: запись столкновения континентов с континентами. J. Asian. Земля. Sci.
25 , 9–27 (2005).
ADS
Статья
Google Scholar
Ван, X., Ван, Т. А. О., Ян, Б.-М., Ху, Н. и Чен, В. Э. Н. Тектоническое значение позднетриасовых постколлизионных даек лампрофиров в горах Циньлин (Китай). Геол. Mag.
144 , 837–848 (2007).
CAS
Статья
Google Scholar
Ван, Ф. и др. . 40 Ar / 39 Ar Термохронология орогенов Центрального Китая: похолодание, подъем и влияние на динамику орогенеза. Геол. Soc. Лондонский спец. Паб.
378 , 189–206 (2014).
ADS
CAS
Статья
Google Scholar
Донг Ю. П. и др. . Тектоническая эволюция орогена Циньлин, Китай: обзор и обобщение. J. Asian. Земля. Sci.
41 , 213–237 (2011).
ADS
Статья
Google Scholar
Донг Ю. П. и др. . Мезозойский внутриконтинентальный орогенез в горах Циньлин в центральном Китае. Gondwana Res.
30 , 144–158 (2016).
Артикул
Google Scholar
Ли, Х., Гао, Р., Ван, Х., Ли, В. и Сюн, X. Использование больших динамитных выстрелов для изображения структуры Мохо в результате эксперимента по глубокому отражению сейсмических волн между бассейном Сычуань и орогеном Циньлин. Earthq. Sci.
29 , 321–326 (2016).
ADS
Статья
Google Scholar
Si, X. et al. . Строение земной коры орогенного горизонта Циньлин и региона на его северной и южной окраинах зависит от функции телесейсмического приемника. китайский. J. Geophys.
59 , 1321–1334 (2016).
Google Scholar
Hu, S. et al. . Позднемезозойская и кайнозойская термотектоническая эволюция вдоль разреза от северо-китайского кратона через ороген Циньлин до кратона Янцзы в центральном Китае. Тектоника
25 , TC6009, DOI: 10.1029 / 2006TC001985 (2006).
ADS
Статья
Google Scholar
Ан, М. и др. . Модель S-скорости и выведенная топография Мохо под Антарктической плитой по волнам Рэлея. J. Geophys. Res-Sol. Эа.
120 , 359–383 (2015).
ADS
Статья
Google Scholar